Photoelectric Properties of Crystalline and Glassy PbGeS3

DOI: 10.4236/ojinm.2013.33006   PDF   HTML   XML   2,617 Downloads   5,178 Views   Citations


The integrated investigations of the stationary characteristics of photoconductivity (the spectral distribution of photoconductivity (PC), luminous-ampere characteristics (LAC), temperature dependences of dark photoconductivity) and the thermostimulated current (TSC) for crystalline and glassy lead thiogermanate (PbGeS3) were performed. It was determined, as a function of crystals growing rate, there are one or two impurity maxima except for the native one in photoconductivity spectra. For the glassy lead thiogermanate in the range of wave lengths of 0.4 - 1.0 μm in PC spectra was revealed the hysteresis at the change of direction wave lengths sweep of incident light, conditioned by the phenomenon of induced impurity conductivity. The activation of PC, caused by thermal emptying of attachment levels, was observed on the temperature dependences of photoconductivity.

Share and Cite:

D. Bletskan and V. Kabatsii, "Photoelectric Properties of Crystalline and Glassy PbGeS3," Open Journal of Inorganic Non-metallic Materials, Vol. 3 No. 3, 2013, pp. 29-36. doi: 10.4236/ojinm.2013.33006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. D. Tsendin, “The Electronic Phenomena in Chalcogenide Glassy Semiconductors,” Nauka, St. Petersburg, 1996.
[2] D. I. Bletskan, N. V. Pоlazhinec and D. V. Chepur, “Photoelectric Properties of Crystalline and Glassy GeSe2,” Fizika I Tekhnika Poluprovodnikov, Vol. 18, No. 2, 1984, pp. 223-228.
[3] D. I. Bletskan, N. М. Krolevec and М. Yu. Sichka, “The Radiative Recombination of GeSex Glasses,” Fizika i Tekhnika Poluprovodnikov, Vol. 10, No. 10, 1976, pp. 1817-1820.
[4] V. А. Vasil’ev, Т. N. Mаmоntоvа and А. V. Chernyshev, “The Radiative Recombination Mechanism in the Glassy and Monocrystalline GeSe2,” Fizika i Tekhnika Poluprovodnikov, Vol. 24, No. 6, 1982, pp. 1769-1775.
[5] R. A. Street, “Luminescence in Amorphous Semiconductors,” Advances in Physics, Vol. 25, No. 4, 1976, pp. 397-453. doi:10.1080/00018737600101412
[6] G. S. Higashi and M. Kastner, “Excitation-Energy Dependence of the Photoluminescence Total-Light Decay in Arsenic Chalcogenides,” Philosophical Magazine B, Vol. 47, No. 1, 1983, pp. 83-98. doi:10.1080/01418638308226786
[7] S. P. Depinna and B. C. Cavennelt, “Exciton and Pair Recombination in Crystalline and Amorphous As2Se3,” Philosophical Magazine B, Vol. 46, No. 1, 1982, pp. 71-76. doi:10.1080/13642818208246423
[8] R. A. Castro, “Investigation of Impurity Atoms of Iron and Tin in Glassy Ge28.5Pb15S56.5 and Ge27Pb17Se56,” News of A.I. Gercen Russian State Pedagogical University, Vol. 6, No. 15, 2006, pp. 43-52.
[9] S. D. Baranovskii, G. A. Bordovsky, L. P. Kazakova, E. A. Lebedev, V. M. Lyubin and N. A. Savinova, “Bipolar Photoconductivity in Chalcogenide Glassy Semiconductors of Ge-Pb-S System,” Fizika i Tekhnika Poluprovodnikov, Vol. 18, 1984, pp. 1016-1020.
[10] G. A. Bordovsky, L. P. Kazakova, E. A. Lebedev., V. M. Lyubin and N. A. Savinova, “Ge-Pb-S Vireous Semiconductors with Bipolar Photoconductivity,” Journal of Non-Crystalline Solids, Vol. 63, No. 3, 1984, pp. 415-418.
[11] G. A. Bordovsky, М. R. Kanychev and Т. V. Kanycheva, “Determination of the Density of States Function in CGS As2Se3 and Ge2.85Pb15.0S56.5 by Capacitance Spectroscopy Techniques,” Leningrad Saint Petersburg University, Leningrad, 1990, pp. 5-11.
[12] G. A. Bordovsky, V. M. Lyubin, N. A. Savinova and V. A. Svetickaya, “Photo- and X-Ray-Conductivity in Thin Films CGS of Ge-Pb-S System,” Glassy Semiconductors, Leningrad, 2-4 October 1985, pp. 99-100.
[13] M. Ribes, J. Olivier-Fourcade, E. Philippot and M. Maurin, “Structure Cristalline d’un Thiogermanate de Plomb á Chaïnes Infinies (PbGeS3)n,” Acta Crystalographica B, Vol. 30, No. 6, 1974, pp. 1391-1395. doi:10.1107/S056774087400495X
[14] J. Sejkora, P. Berlepsch, E. Makovicky and T. Balic-Zunic, “Natural SnGeS3 from Radvanice near Trutnov (Czech Republic): Its Description, Crystal Structure Refinement and Solid Solution with PbGeS3,” European Journal of Mineralogy, Vol. 13, No. 4, 2001, pp. 791-800. doi:10.1127/0935-1221/2001/0013-0791
[15] D. I. Bletskan, V. N. Kabacij, T. A. Sakal and V. A. Stefanovych, “Structure and Vibrational Spectra of MIIAIVB3VI-Type Crystalline and Glassy Semiconductors,” Journal of Non-Crystalline Solids, Vol. 326-327, 2003, pp. 77-82. doi:10.1016/S0022-3093(03)00381-8
[16] Z. V. Popovic, “Infrared and Raman Spectra of PbGeS3,” Physica В, Vol. 119, No. 3, 1983, pp. 283-289.
[17] Z. V. Popovic, “The Vibrational Properties of Single Crystal PbGeS3,” Fizika Tverdogo Tela, Vol. 28, No. 2, 1986, pp. 344-351.
[18] U. V. Alpen, J. Fenner and E. Gmelin, “Semiconductors of Type MeIIMeIVS3,” Materials Research Bulletin, Vol. 10, No. 3, 1975, pp. 175-180. doi:10.1016/0025-5408(75)90152-X
[19] D. I. Bletskan, V. N. Kabacij, I. P. Studenyak and V. V. Frolova, “Edge Absorption Spectra of Crystalline and Glassy PbGeS3,” Optics and Spectroscopy, Vol. 103, No. 5, 2007, pp. 772-776. doi:10.1134/S0030400X0711015X
[20] D. I. Bletskan and V. N. Kabatsii, “Volumetric Optical Coating and Device for Its Infliction,” Patent of Ukraine No. 95127, Bul. 13, 2011.
[21] L. I. Bekicheva, G. A. Bordovsky, М. R. Kanychev, N. A. Savinova and V. V. Stepanov, “The Influence of Deep Trapping Levels on the Characteristics of Two-Layered Electrophotographic Information Carrier,” Journal of Scientific and Applied Photography and Cinematography, Vol. 32, No. 2, 1987, pp. 123-128.
[22] A. E. Owen, “Electron Transport in Chalcogenide Glasses, Coherence and Energy Transfer in Glasses,” Plenum, New York, 1984, pp. 243-278. doi:10.1007/978-1-4684-4733-0_11
[23] A. I. Vlasenko, Z. K. Vlasenko and A. V. Lyubchenko, “Spectral Characteristics of the Photoconductivity of Semiconductors with Exponential Edge of the Fundamental Absorption,” Fizika i Tekhnika Poluprovodnikov, Vol. 33, No. 11, 1999, pp. 1295-1299.
[24] R. H. Bube, “Photoconductivity of Solids,” Wiley, New York, 1960.
[25] S. M. Ryvkin, “Photoelectric Phenomena in Semiconductors,” Fizmatgiz, Moscow, 1963.
[26] H. F. Mataré and K. S. Cho, “Field Dependence of Photoresponse in Germanium Bicrystals,” Journal of Applied Physics, Vol. 36, No. 11, 1965, pp. 3427-3431. doi:10.1063/1.1703010
[27] W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel and M. Seibt, “Bandlike and Localized States at Extended Defects in Silicon,” Physical Review B, Vol. 52, No. 19, 1995, pp. 13726-13729. doi:10.1103/PhysRevB.52.13726
[28] G. A. Bordovsky, М. R. Kanychev and V. M. Lyubin, “The Relaxation Process Features of the Surface Potential and Thermally Stimulated Effects in Bipolar Glassy Semiconductors of Ge-Pb-S System,” Fizika i Tekhnika Poluprovodnikov, Vol. 20, No. 9, 1986, pp. 1613-1616.
[29] D. I. Bletskan, V. N. Kabatsiy and V. V. Frolova, “Peculiarities of the Absorption Edge and Photoconductivity Spectra of (GeS2)x(Bi2S3)1-x Glasses,” Chalcogenide Letters, Vol. 4, No. 10, pp. 119-126.
[30] V. E. Lashkarev, А.В. Lyubchenko and M. C. Sheynkman, “Non-Equilibrium Processes in Photosemiconductors,” Naukova Dumka, Kiev, 1981.
[31] G. F. J. Garlick and A. F. Gibson, “The Electron Trap Mechanism of Luminescence in Sulfide and Silicate Phosphors,” Proceedings of the Physical Society, Vol. 60, No. 6, 1948, pp. 574-590. doi:10.1088/0959-5309/60/6/308
[32] W. Hoogensraaten, “Electron Traps in ZnS Phosphorus,” Philips Research Report, Vol. 13, 1958, pp. 515-693.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.