Thermal Diffusivity and Thermal Conductivity of Epoxy-Based Nanocomposites by the Laser Flash and Differential Scanning Calorimetry Techniques

Abstract

Nanocomposites were fabricated by using a commercial two part epoxy as a matrix and multiwalled carbon nanotubes, graphite fibers and boron nitride platelets as filler materials. Multiwalled carbon nanotubes (MWCNTs) that were produced by chemical vapor deposition were found to produce nanocomposites with better thermal diffusivity and thermal conductivity than the MWCNTs that were produced by the combustion method. Compared to the MWCNTs produced by both methods and graphite fibers, boron nitride produced nanocomposites with the highest thermal conductivity. Specific heat capacity was measured by using differential scanning calorimetry and thermal diffusivity was measured by using the laser flash.

Share and Cite:

J. Chiguma, E. Johnson, P. Shah, N. Gornopolskaya and W. Jones Jr., "Thermal Diffusivity and Thermal Conductivity of Epoxy-Based Nanocomposites by the Laser Flash and Differential Scanning Calorimetry Techniques," Open Journal of Composite Materials, Vol. 3 No. 3, 2013, pp. 51-62. doi: 10.4236/ojcm.2013.33007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. M. Razeeb and E. Dalton, “Nanowire-Polymer Nanocomposites as Thermal Interface Material,” In: B. Reddy, Ed., Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications, InTech, Winchester, 2011, pp. 685-706.
[2] W. L. Song, P. Wang, L. Cao, A. Anderson, M. J. Meziani, A. J. Farr and Y.-P. Sun, “Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance,” Angewandte Chemie International Edition, Vol. 51, No. 26, 2012, pp. 6498-6501. doi:10.1002/anie.201201689
[3] T. Tanaka, M. Kozako and K. Okamoto, “Toward High Thermal Conductivity Nano Micro Epoxy Composites with Sufficient Endurance Voltage,” Journal of International Council on Electrical Engineering, Vol. 2, No. 1, 2012, pp. 90-98. doi:10.5370/JICEE.2012.2.1.090
[4] S. S. Samal, “Role of Temperature and Carbon Nanotube Reinforcement on Epoxy Based Nanocomposites,” Materials Characterization, Vol. 8, No. 1, 2009, pp. 25-36.
[5] H. H. So, J. W. Cho and N. G. Sahoo, “Effect of Carbon Nanotubes on Mechanical and Electrical Properties of Polyimide/Carbon Nanotubes Nanocomposites,” European Polymer Journal, Vol. 43, No. 9, 2007, pp. 3750-3756. doi:10.1016/j.eurpolymj.2007.06.025
[6] T. Rohr and M. V. Eesbeek, “Polymer Materials in the Space Environment,” Proceeding of the 8th Polymers for Advanced Technologies International Symposium, 13-16 September 2005, Budapest, pp. 8-10.
[7] W. Gacitua, A. Ballerini and J. Zhang, “Polymer Nanocomposites: Synthetic and Natural Fillers a Review,” Maderas. Ciencia y Tecnología, Vol. 7, No. 3, 2005, pp. 159-178.
[8] J.-H. Du, J. Bai and H.-M. Cheng, “The Present Status and Key Problems of Carbon Nanotube Based Polymer Composites,” eXPRESS Polymer Letters, Vol. 1, No. 5, 2007, pp. 253-273.
[9] J. Liu, T. Liu and S. Kumar, “Effect of Solvent Solubility Parameter on SWNT Dispersion in PMMA,” Polymer, Vol. 46, No. 10, 2005, pp. 3419-3424. doi:10.1016/j.polymer.2005.02.086
[10] W. E. Jones, J. Chiguma, E. Johnson, A. Pachamuthu and D. Santos, “Electrically and Thermally Conducting Nanocomposites for Electronic Applications,” Materials, Vol. 3, No. 2, 2010, pp. 1478-1496. doi:10.3390/ma3021478
[11] Y. Wang, J. Wu and F. Wei, “A Treatment Method to give Separated Multi-Walled Carbon Nanotubes with High Purity, High Crystallization and a Large Aspect Ratio,” Carbon, Vol. 41, No. 15, 2003, pp. 2939-2948. doi:10.1016/S0008-6223(03)00390-7
[12] H. Chen, H. Muthuraman and P. Stokes, “Dispersion of Carbon Nanotubes and Polymer Nanocomposite Fabrication Using Trifluoroacetic Acid as a Co-Solvent,” Nanotechnology, Vol. 18, No. 41, 2007, p. 415606. doi:10.1088/0957-4484/18/41/415606
[13] M. S. Strano, “Polymer-Wrapped Nanotubes,” Nature Materials, Vol. 5, No. 6, 2006, pp. 433-435.
[14] I. Alig, T. Skipa, D. Lellinger, M. Bierdel and H. Meyer, “Dynamic Percolation of Carbon Nanotube Agglomerates in a Polymer Matrix: Comparison of Different Model Approaches,” Physica Status Solidi (B), Vol. 245, No. 10, 2008, pp. 2264-2267. doi:10.1002/pssb.200879622
[15] H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich, “Thermal Conductivity of Exfoliated Graphite Nanocomposites,” Journal of Thermal Analysis, Vol. 85, No. 1, 2006, pp. 235-238. doi:10.1007/s10973-005-7344-x
[16] W. Nunes, P. Mummery and A. Wallwork, “Thermal Diffusivity of Polymers by the Laser Flash Technique,” Polymer Testing, Vol. 24, No. 5, 2005, pp. 628-634. doi:10.1016/j.polymertesting.2005.03.007
[17] M. Merzlyakov and C. Schick, “Thermal Conductivity from Dynamic Response of DSC,” Thermochimica Acta, Vol. 377, No. 1-2, 2001, pp. 183-191. doi:10.1016/S0040-6031(01)00553-6
[18] C. Blanco, S. P. Appleyard and B. Rand, “Study of Carbon Fibres and Carbon-Carbon Composites by Scanning Thermal Microscopy,” Journal of Microscopy, Vol. 205, Pt. 1, 2002, pp. 21-32. doi:10.1046/j.0022-2720.2001.00974.x
[19] F. Ochanda and W. E. Jones, “Fabrication and Thermal Analysis of Submicron Silver Tubes Prepared from Electrospun Fiber Templates,” Langmuir, Vol. 23, No. 2, 2007, pp. 795-801. doi:10.1021/la061385n
[20] P. S. Gaal, M. Thermitus and D. E. Stroe, “Thermal Conductivity Measurements Using the Flash Method,” Journal of Thermal Analysis and Calorimetry, Vol. 78, No. 1, 2004, pp. 185-189. doi:10.1023/B:JTAN.0000042166.64587.33
[21] C. Chiu, J. G. Maveety and Q. A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, Vol. 42, No. 1, 2002, pp. 93-100. doi:10.1016/S0026-2714(01)00129-9
[22] R. L. Danley, “New Heat Flux DSC Measurement Technique,” Thermochimica Acta, Vol. 395, No. 1-2, 2003, pp. 201-208.
[23] V. Buryachenko, A. Roy, K. Lafdi, K. Anderson and S. Chellapilla, “Multi-Scale Mechanics of Nanocomposites Including Interface: Experimental and Numerical Investigation,” Composites Science and Technology, Vol. 65, No. 15-16, 2005, pp. 2435-2465. doi:10.1016/j.compscitech.2005.08.005
[24] J. N. Coleman, U. Khan, W. J. Blau and Y. K. Gun, “Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites,” Carbon, Vol. 44, No. 9, 2006, pp. 1624-1652. doi:10.1016/j.carbon.2006.02.038
[25] A. C. Dillon, A. W. Ott, J. D. Way and S. M. George, “Surface Chemistry of Al2O3, Deposition Using Al(CH3)3 and H2O in a Binary Reaction Sequence,” Surface Science, Vol. 322, No. 1-3, 1995, pp. 230-242. doi:10.1016/0039-6028(95)90033-0
[26] A. W. Ott, J. W. Klaus, J. M. Johnson and S. M. George, “Al2O3 Thin Film Growth on Si(100) Using Binary Reaction Sequence Chemistry,” Thin Solid Films, Vol. 292, No. 1-2, 1997, pp. 135-144. doi:10.1016/S0040-6090(96)08934-1
[27] A. W. Ott, K. C. McCarley, J. W. Klaus, J. D. Way and S. M. George, “Atomic Layer Controlled Deposition of Al2O3 Films Using Binary Reaction Sequence Chemistry,” Applied Surface Science, Vol. 107, 1996, pp. 128-136. doi:10.1016/S0169-4332(96)00503-X
[28] J. R. Wank, S. M. George and A. W. Weimer, “Nanocoating individual cohesive boron nitride particles in a Fluidized Bed by ALD,” Powder Technology, Vol. 142, No. 1, 2004, pp. 59-69. doi:10.1016/j.powtec.2004.03.010

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.