[1]
|
W. Aiello and H. Freedman, “A Time-Delay Model of Single-Species Growth with Stage Structure,” Mathematical Biosciences, Vol. 101, No. 2, 1990, pp. 139-153.
doi:10.1016/0025-5564(90)90019-U
|
[2]
|
W. Wang and L. Chen, “A Predator-Prey System with Stage-Structure for Predator,” Computers & Mathematics with Applications, Vol. 33, No. 8, 1997, pp. 83-91.
doi:10.1016/S0898-1221(97)00056-4
|
[3]
|
S. Liu, L. Chen and R. Agarwal, “Recent Progress on Stage Structured Population Dynamics,” Mathematical and Computer Modelling, Vol. 36, No. 11-13, 2002, pp. 1319-1360. doi:10.1016/S0895-7177(02)00279-0
|
[4]
|
S. Gao, “Global Stability of Three-Stage-Structured Single-Species Growth Model,” Journal Xinjiang University, Vol. 18, No. 12, 2001, pp. 154-158 (in Chinese).
|
[5]
|
S. Yang and B. Shi. “Periodic Solution for a Three-Stage Structured Predator-Prey System with Time Delay,” Journal of Mathematical Analysis and Applications, Vol. 341, No. 1, 2008, pp. 287-294.
doi:10.1016/j.jmaa.2007.10.025
|
[6]
|
S. Li and X. Xue, “Hopf Bifurcation in a Three-Stage Structured Prey-Predator System with Predator Density Dependent,” Communications in Computer and Information Science, Vol. 288, 2012, pp. 740-747.
doi:10.1007/978-3-642-31965-5_86
|
[7]
|
S. Li, Y. Xue and W. Liu, “Hopf Bifurcation and Global Periodic Solutions for a Three-Stage-Structured Prey Predator System with Delays,” International Journal of Informationa and Systems Sciences, Vol. 8, No. 1, 2012, pp. 142-156.
|
[8]
|
Z. Wang, “A Very Simple Criterion for Characterizing the Crossing Direction of Time-delayed Systems with Delay-Dependent Parameters,” International Journal of Bifurcation and Chaos, Vol. 22, No. 3, 2012, Article ID: 1250048. doi:10.1007/978-1-4612-9892-2
|
[9]
|
J. Hale, “Theory of Functional Differential Equations,” Springer, New York, 1977.
|
[10]
|
B. Hassard, N. Kazarinoff and Y. Wan, “Theory and Applications of Hopf Bifurcation,” Cambridge University Press, Cambridge, 1981.
|