Lattice Enthalpy Drives Hubbard U to Zero
Sven Larsson
Department of Chemistry, Chalmers, Sweden.
DOI: 10.4236/jmp.2013.46A007   PDF   HTML   XML   3,140 Downloads   4,405 Views   Citations


In the equation U = IA for the Mott energy, the electron-hole interaction of the successor state is missing. Adding the attractive term, the energy for disproportionation (Hubbard U), may adopt any sign. The missing term is related to the Born effect, the Madelung correction and the Lattice Enthalpy.

Share and Cite:

S. Larsson, "Lattice Enthalpy Drives Hubbard U to Zero," Journal of Modern Physics, Vol. 4 No. 6A, 2013, pp. 29-32. doi: 10.4236/jmp.2013.46A007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. W. Sleight, Science, Vol. 242, 1988, p. 1519. doi:10.1126/science.242.4885.1519
[2] B. Batlogg, R. J. Cava, L. F. Schneemeyer and G. P. Espinosa, IBM Journal of Research and Development, Vol. 33, 1989, pp. 208-214. doi:10.1147/rd.333.0208
[3] S. Larsson, International Journal of Quantum Chemistry, Vol. 112, 2012, pp. 1829-1837. doi:10.1002/qua.23207
[4] S. Larsson and J. Supercond, Journal of Superconductivity and Novel Magnetism, Vol. 25, 2011, pp. 319-323. doi:10.1007/s10948-011-1309-z
[5] R. A. Marcus, Annual Review of Physical Chemistry, Vol. 15, 1964, p. 155. doi:10.1146/annurev.pc.15.100164.001103
[6] A. Klimkāns, Thesis. (Unpublished but a Version Exists, Updated by the Present Author).
[7] P.-O. Lowdin, Physical Review, Vol. 97, 1955, pp. 1509-1520. doi:10.1103/PhysRev.97.1509
[8] L. N. Cooper, Physical Review, Vol. 104, 1956, pp. 1189-1190. doi:10.1103/PhysRev.104.1189
[9] J. G. Bednorz and K. A. Müller, Journal of Physics B, Vol. 64, 1986, pp. 189-193.
[10] P. W. Anderson, Physical Review Letters, Vol. 14, 1975, pp. 953-955. doi:10.1103/PhysRevLett.34.953
[11] L. D. Landau, “über Die Bewegung der Elektronen in Kristallgitter,” Phys. Z. Sowjetunion, Vol. 3, 1933, pp. 644-645.
[12] S. I. Pekar, “Study of Electron Theory of Crystals (Issledovanija po Ekektronnoj Teorii Kristallov),” Usp. Fiz. Nauk, Vol. 48, No. 3, 1952, pp. 447-451.
[13] T. Holstein, Annals of Physics|, Vol. 8, 1959, pp. 325-389.
[14] B. O. Roos, In: K. P. Lawley, Ed., Advances in Chemical Physics: Ab Inition Methods in Quantum Chemistry II, Wiley, Chicester, 1987, p. 399.
[15] M. Born, Zeitschrift für Physik, Vol. 1, 1920, p. 45. doi:10.1007/BF01881023
[16] I. Hase and T. Yanagizawa, Journal of Physics: Conference Series, Vol. 108, 2008, Article ID: 012011. doi:10.1088/1742-6596/108/1/012011
[17] M. Born and F. Haber, See Internet or Books in Physical Chemistry for an Account.
[18] E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Melnik, N. J. Curro, J. D. Thompson and S. M. Stishov, Nature, Vol. 428, 2004, p. 542. doi:10.1038/nature02449
[19] E. Bustarret, F. Pruvost, M. Bernard, C. Cytermann and C. Uzan-Saguy, Physica Status Solidi A, Vol. 186, 2001, p. 303. doi:10.1002/1521-396X(200108)186:2<303::AID-PSSA303>3.0.CO;2-5
[20] D. Wu, Y. C. Ma, Z. L. Wang, Q. Luo, C. Z. Gu, N. L. Wang, C. Y. Li, X. Y. Lu and Z. S. Jin, Physical Review B, Vol. 73, 2006, Article ID: 012501. doi:10.1103/PhysRevB.73.012501
[21] S. Larsson, Diamond and Related Materials, Vol. 26, 2012, pp. 71-77. doi:10.1016/j.diamond.2012.04.001
[22] S. Larsson, Journal of Superconductivity and Novel Magnetism, Vol. 26, 2013, pp. 1089-1091.
[23] S. Larsson, Chemical Physics, Vol. 326, 2006, pp. 115-122. doi:10.1016/j.chemphys.2006.02.025
[24] S. Larsson, Advances in Condensed Matter Physics, Vol. 2010, 2010, Article ID: 627452. doi:10.1155/2010/627452

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.