[1]
|
M. Marion and R. Temam, “Nonlinear Galerkin Methods,” SIAM Journal on Numerical Analysis, Vol. 26, No. 5, 1989, pp. 1139-1157. doi:10.1137/0726063
|
[2]
|
J. Sembera and M. Benes, “Nonlinear Galerkin Method for Reaction-Diffusion Systems Admitting Invariant Regions,” Journal of Computational and Applied Mathematics, Vol. 136, No. 1-2, 2001, pp. 163-176.
doi:10.1016/S0377-0427(00)00582-3
|
[3]
|
J. Mach, “Application of the Nonlinear Galerkin FEM Method to the Solution of the Reaction Diffusion Equations,” Journal of Math-for-Industry, Vol. 3, 2011, pp. 41-51.
|
[4]
|
M. Kolár, “Mathematical Modelling and Numerical Simulations of Reaction-Diffusion Processes,” Diploma Thesis, Department of Mathematics FNSPE CTU, Prague, 2012.
|
[5]
|
A. Debussche and M. Marion, “On the Construction of Families of Approximate Inertial Manifolds,” Journal of Differential Equations, Vol. 100, No. 1, 1992, pp. 173-201. doi:10.1016/0022-0396(92)90131-6
|
[6]
|
S. K. Scott, J. Wang and K. Showalter, “Modelling Studies of Spiral Waves and Target Patterns in Premixed Flames,” Journal of the Chemical Society, Faraday Transactions, Vol. 93, No. 9, 1997, pp. 1733-1739.
doi:10.1039/a608474e
|
[7]
|
V. Tomica, “Reaction-Diffusion Equations in Combustion,” Proceedings of Czech Japanese Seminar in Applied Mathematics, Prague, 30 August-4 September 2010, pp. 84-93.
|
[8]
|
R. Temam, “Infinite-Dimensional Dynamical Systems in Mechanics and Physics,” Springer, Berlin, 1997.
|
[9]
|
J. L. Lions, “Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires,” Dunod, Paris, 1969.
|