Inter-Conversion of Carbohydrate Reserves from Pollen Maturation to Rehydration in a Chili Pepper


Carbohydrate metabolism is critical for male fertility. Carbohydrate reserves (soluble sugars and starch) were quantified in three advanced stages of pollen development, from the final maturation to rehydration, in a chili pepper cultivar (Capsicum annuum L. cv. Calypso Red) with partially dehydrated pollen, to define possible carbohydrate inter-conversions. At the same time, the activity of soluble enzymes involved in sucrolysis and amylolysis were quantified to reveal potential metabolic pathways. The carbohydrates found (sucrose, glucose, fructose, and starch) apparently inter-convert. There would be a close relation between enzymatic activities and substrates, and the carbohydrate reserves could be key factors on the regulation of enzymatic activities. All the enzymes tested were active, although the relevance of each one changed along pollen maturation and rehydration, defining different profiles of enzymatic activities for each stage. Some usually neglected enzymes (e.g. soluble neutral invertase) have shown an important role in the stages analyzed, suggesting alternative processes to evaluate in the studies of male fertility control.

Share and Cite:

C. García, M. Guarnieri and E. Pacini, "Inter-Conversion of Carbohydrate Reserves from Pollen Maturation to Rehydration in a Chili Pepper," American Journal of Plant Sciences, Vol. 4 No. 6, 2013, pp. 1181-1186. doi: 10.4236/ajps.2013.46146.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. Pacini, “Types and Meaning of Pollen Carbohydrate Reserves,” Sexual Plant Reproduction, Vol. 9, No. 6, 1996, pp. 362-366. doi:10.1007/BF02441957
[2] E. Pacini, M. Guarnieri and M. Nepi, “Pollen Carbohydrates and Water Content during Development, Presentation, and Dispersal: A Short Review,” Protoplasma, Vol. 228, No. 1-3, 2006, pp. 73-77. doi: s00709-006-0169-z
[3] M. Nepi, G. G. Franchi and E. Pacini, “Pollen Hydration Status at Dispersal: Cytophysiological Features and Strategies,” Protoplasma, Vol. 216, No. 3-4, 2001, pp. 171-180. doi:10.1007/BF02673869
[4] J. L. Vesprini, M. Nepi, L. Cresti, M. Guarnieri and E. Pacini, “Changes in Cytoplasmic Carbohydrate Content during Helleborus Pollen Presentation,” Grana, Vol. 41, No. 1, 2002, pp. 16-20. doi:10.1080/00173130260045459
[5] D. B. Dickinson, “Rapid Starch Synthesis Associated with Increased Respiration in Germinating Lily Pollen,” Plant Physiology, Vol. 43, No. 1, 1968, pp. 1-8. doi:10.1104/pp.43.1.1
[6] M. B. Singh, C. P. Malik and N. Thapar, “Changes in the Activities of Some Enzymes of Carbohydrate Metabolism in Amaryllis vittata Pollen Suspension Cultures,” Plant and Cell Physiology, Vol. 19, No. 4, 1978, pp. 677-684.
[7] F. A. Hoekstra, M. Crowe and J. H. Crowe, “Differential Desiccation Sensitivity of Corn and Pennisetum Pollen Linked to Their Sucrose Contents,” Plant, Cell and Environment, Vol. 12, No. 1, 1989, pp. 83-91. doi:10.1111/j.1365-3040.1989.tb01919.x
[8] N. Nakamura, M. Sado and Y. Arai, “Sucrose Metabolism during the Pollen Growth of Camellia japonica Pollen,” Phytochemistry, Vol. 19, No. 2, 1980, pp. 205-209. doi:10.1016/S0031-9422(00)81961-5
[9] J. Tupy, “Sugar Absorption, Callose Formation and the Growth Rate of Pollen Tubes,” Biologia Plantarum, Vol. 2, No. 3, 1960, pp. 169-180. doi:10.1007/BF02920646
[10] M. B. Singh and R. B. Knox, “Invertases of Lilium Pollen. Characterization and Activity during in Vitro Germination,” Plant Physiology, Vol. 74, No. 3, 1984, pp. 510-515. doi:10.1104/pp.74.3.510
[11] M. Goetz, D. E. Godt, A. Guivarc’h, U. Kahmann, D. Chriqui and T. Roitsch, “Induction of Male Sterility in Plants by Metabolic Engineering of the Carbohydrate Supply,” Proceedings of the National Academy of Sciences of the United State of America, Vol. 98, No. 11, 2001, pp. 6522-6527. doi:10.1073/pnas.091097998
[12] P. K. Koonjul, J. S. Minhas, C. Nunes, L. S. Sheroan and H. S. Saini, “Selective Transcriptional Down-Regulation of Anther Invertases Precedes the Failure of Pollen Development in Water-Stressed Wheat,” Journal of Experimental Botany, Vol. 56, No. 409, 2005, pp. 179-190. doi:10.1093/jxb/eri018
[13] E. Pressman, R. Shaked and N. Firon, “Exposing Pepper Plants to High Day Temperatures Prevents de Adverse Low Night Temperature Symptoms,” Physiologia Plantarum, Vol. 126, No. 4, 2006, pp. 618-626. doi:10.1111/j.1399-3054.2006.00623.x
[14] E. Pressman, R. Shaked, S. Shen, L. Altahan and N. Firon, “Variations in carbohydrate content and sucrose-metabolizing enzymes in tomato (Solanum lycopersicum L.) stamen parts during pollen maturation,” American Journal of Plant Sciences, Vol. 3, No. 2, 2012, pp. 252-260. doi:10.4236/ajps.2012.32030
[15] J. A. Castro and C. Clément, “Sucrose and Starch Catabolism in the Anther of Lilium during Its Development: A Comparative Study among the Anther Wall, Locular Fluid and Microspore/Pollen Fraction,” Planta, Vol. 225, No. 6, 2007, pp. 1573-1582. doi:10.1007/s00425-006-0443-5
[16] D. Persia, G. Cai, C. Del Casino, C. Faleri, M. T. M. Willemse and M. Cresti, “Sucrose Synthase Is Associated with the Cell Wall of Tobacco Pollen Tubes,” Plant Physiology, Vol. 147, No. 4, 2008, pp. 1603-1618. doi:10.1104/pp.108.115956
[17] J. A. Mercado, R. Fernández-Muñoz and M. A. Quesada, “In Vitro Germination of Pepper Pollen in Liquid Medium,” Scientia Horticulturae, Vol. 57, No. 4, 1994, pp. 273-281.doi:10.1016/0304-4238(94)90110-4
[18] C. Carrizo García, M. Guarnieri and E. Pacini, “Soluble Carbohydrates Content in Tomato Pollen and Its Variations along and between Blooming Periods,” Scientia Horticulturae, Vol. 125, No. 3, 2012, pp. 524-527. doi:10.1016/j.scienta.2010.04.026
[19] M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Using the Principle of Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 143-147. doi:10.1016/0003-2697(76)90527-3
[20] B. Aloni, M. Peet, M. Pharr and L. Karni, “The Effect of High Temperature and High Atmospheric CO2 on Carbohydrate Changes in Bell Pepper (Capsicum annuum) Pollen in Relation to Its Germination,” Physiologia Plantarum, Vol. 112, No. 4, 2001, pp. 505-512. doi:10.1034/j.1399-3054.2001.1120407.x
[21] F. A. Hoekstra and T. van Roekel, “Desiccation Tolerance of Papaver dubium L. Pollen during Its Development in the Anther,” Plant Physiology, Vol. 88, No. 3, 1988, pp. 626-632. doi:10.1104/pp.88.3.626
[22] C. Carrizo García, M. Guarnieri and E. Pacini, “Tomato Pollen Tube Development and Carbohydrate Fluctuations in the Autotrophic Phase of Growth,” Acta Physiologiae Plantarum, Vol. 34, No. 6, 2012, pp. 2341-2347. doi:10.1007/s11738-012-1037-4
[23] S. N. Oliver, J. T. van Dongen, S. C. Alfred, E. A. Mamun, X. Zhao, H. S. Saini, S. F. Fernandes, C. L. Blanchard, B. G. Sutton, P. Geigenberger, E. S. Dennis and R. Dolferus, “Cold-Induced Repression of the Rice Anther-Specific Cell Wall Invertase Gene OSINV4 Is Correlated with Sucrose Accumulation and Pollen Sterility,” Plant, Cell and Environment, Vol. 28, No. 12, 2005, pp. 1534-1551. doi:10.1111/j.1365-3040.2005.01390.x
[24] T. Roitsch and M. C. González, “Function and Regulation of Plant Invertases: Sweet Sensations,” Trends in Plant Science, Vol. 9, No. 12, 2004, pp. 606-613. doi:10.1016/j.tplants.2004.10.009

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.