Share This Article:

Feline Hypertrophic Cardiomyopathy Associated with the p.A31P Mutation in cMyBP-C Is Caused by Production of Mutated cMyBP-C with Reduced Binding to Actin

Abstract Full-Text HTML Download Download as PDF (Size:2906KB) PP. 95-103
DOI: 10.4236/ojvm.2013.32016    4,019 Downloads   6,244 Views   Citations

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a myocardial disorder, with complications including heart failure, thromboemboli and sudden death. Human and feline HCM (fHCM) are clinically comparable, thus fHCM may serve as a spontaneous animal model. fHCM in Maine Coon (MC) cats is associated with the p.A31P mutation in the cMyBP-C protein. The mutation is located in the cMyBP-C C0-domain which is known to interact with actin. The presence and levels of the wild type and mutated protein in heart tissue from mutant and wild type MC cats were examined by SDS-PAGE and mass spectrometry (MS). Quantitative yeast-2-hybrid (Y2H) protein-protein interaction analysis was used to assess the effect of the mutation on C0C1/actin interaction. The NMR-based structure of the C0 domain was used to calculate the energetic consequence of replacing alanine with a proline residue. In the homozygous MC cat, the mutated cMyBP-C protein was present, and cMyBPC-C levels were not reduced compared to that of the wild type cat. However, the interaction of actin with mutant cMyBP-C C0C1 was reduced compared to that of wild type. This may be because the substitution of the alanine with proline in position 31 was energetically highly unfavorable and resulted in only one hydrogen bond within the anti-parallel beta-strand compared to two hydrogen-bonds for alanine, possibly destabilizing the structure of the actin-interacting domain. The p.A31P mutation is present in cardiac tissue and the most likely pathogenic mechanism is interference with contractility by reducing binding of the C0C1 domain of cMyBP-C to actin.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Godiksen, C. Kinnear, T. Ravnsborg, P. Højrup, S. Granström, I. Laursen, P. Hedley, J. Moolman-Smook, W. McKenna, J. Koch and M. Christiansen, "Feline Hypertrophic Cardiomyopathy Associated with the p.A31P Mutation in cMyBP-C Is Caused by Production of Mutated cMyBP-C with Reduced Binding to Actin," Open Journal of Veterinary Medicine, Vol. 3 No. 2, 2013, pp. 95-103. doi: 10.4236/ojvm.2013.32016.

References

[1] J. A. Towbin, “Hypertrophic Cardiomyopathy,” Pacing and Clinical Electrophysiology, Vol. 32, No. S2, 2009, pp. S23-S31. doi:10.1111/j.1540-8159.2009.02381.x
[2] S. Gundler, A. Tidholm and J. Haggstrom, “Prevalence of Myocardial Hypertrophy in a Population of Asymptomatic Swedish Maine Coon Cats,” Acta Veterinaria Scandinavica, Vol. 50, 2008, p. 22. doi:10.1186/1751-0147-50-22
[3] M. T. N. Godiksen, S. Granstrom, J. Koch and M. Christiansen, “Hypertrophic Cardiomyopathy in Young Maine Coon Cats Caused by the p.A31P cMyBP-C Mutation— The Clinical Significance of Having the Mutation,” Acta Veterinaria Scandinavica, Vol. 53, No. 7, 2011, pp. 2-11.
[4] P. R. Fox, S. K. Liu and B. J. Maron, “Echocardiographic Assessment of Spontaneously Occurring Feline Hypertrophic Cardiomyopathy. An Animal Model of Human Disease,” Circulation, Vol. 92, No. 9, 1995, pp. 2645-2651. doi:10.1161/01.CIR.92.9.2645
[5] M. D. Kittleson, K. M. Meurs, M. J. Munro, J. A. Kittleson, S. K. Liu, P. D. Pion and J. A. Towbin, “Familial Hypertrophic Cardiomyopathy in Maine Coon Cats: An Animal Model of Human Disease,” Circulation, Vol. 99, No. 31, 1999, pp. 72-80.
[6] K. M. Meurs, X. Sanchez, R. M. David, N. E. Bowles, J. A. Towbin, P. J. Reiser, J. A. Kittleson, M. J. Munro, K. Dryburgh, K. A. MacDonald and M. D. Kittleson, “A Cardiac Myosin Binding Protein C Mutation in the Maine Coon Cat with Familial Hypertrophic Cardiomyopathy,” Human Molecular Genetics, Vol. 14, No. 23, 2005, pp. 3587-3593. doi:10.1093/hmg/ddi386
[7] R. Fries, A. M. Heaney and K. M. Meurs, “Prevalence of the Myosin-Binding Protein C Mutation in Maine Coon Cats,” Journal of Veterinary Internal Medicine, Vol. 22, No. 4, 2008, pp. 893-896. doi:10.1111/j.1939-1676.2008.0113.x
[8] G. Wess, C. Schinner, K. Weber, H. Kuchenhoff and K. Hartmann, “Association of A31P and A74T Polymorphisms in the Myosin Binding Protein C3 Gene and Hypertrophic Cardiomyopathy in Maine Coon and Other Breed Cats,” Journal of Veterinary Internal Medicine, Vol. 24, No. 3, 2010, pp. 527-532. doi:10.1111/j.1939-1676.2010.0514.x
[9] P. S. Andersen, O. Havndrup, H. Bundgaard, L. A. Larsen, J. Vuust, K. A. Pedersen, K. Kjeldsen and M. Christiansen, “Genetic and Phenotypic Characterization of Mutations in Myosin-Binding Protein C (MYBPC3) in 81 Families with Familial Hypertrophic Cardiomyopathy: Total or Partial Haploinsufficiency,” European Journal of Human Genetics, Vol. 12, No. 8, 2004, pp. 673-677. doi:10.1038/sj.ejhg.5201190
[10] A. J. Marian, “Genetic Determinants of Cardiac Hypertrophy,” Current Opinion in Cardiology, Vol. 23, No. 3, 2008, pp. 199-205. doi:10.1097/HCO.0b013e3282fc27d9
[11] P. Jaaskelainen, J. Kuusisto, R. Miettinen, P. Karkkainen, S. Karkkainen, S. Heikkinen, P. Peltola, J. Pihlajamaki, I. Vauhkonen and M. Laakso, “Mutations in the Cardiac Myosin-Binding Protein C Gene Are the Predominant Cause of Familial Hypertrophic Cardiomyopathy in Eastern Finland,” Journal of Molecular Medicine, Vol. 80, No. 7, 2002, pp. 412-422. doi:10.1007/s00109-002-0323-9
[12] M. Alders, R. Jongbloed, W. Deelen, A. van den Wijngaard, P. Doevendans, F. Ten Cate, V. Regitz-Zagrosek, H. P. Vosberg, I. van Langen, A. Wilde, D. Dooijes and M. Mannens, “The 2373insG Mutation in the MYBPC3 Gene Is a Founder Mutation, Which Accounts for Nearly One-Fourth of the HCM Cases in the Netherlands,” European Heart Journal, Vol. 24, No. 20, 2003, pp. 1848-1853. doi:10.1016/S0195-668X(03)00466-4
[13] A. J. Saltzman, D. Mancini-Dinardo, C. Li., W. K. Chung, C. Y. Ho, S. Hurst, J. Wynn, M. Care, R. M. Hamilton, G. W. Seidman, J. Gorham, B. McDonough, E. Sparks, J. G. Seidman, C. E. Seidman and R. L. Rehm, “The Cardiac Myosin Binding Protein C Arg502Trp Mutation. A Common Cause of Hypertrophic Cardiomyopathy,” Circulation Research, Vol. 108, 2010, pp. 743-750.
[14] L. Nanni, M. Pieroni, C. Chimenti, B. Simionati, R. Zimbello, A. Maseri, A. Frustaci and G. Lanfranchi, “Hypertrophic Cardiomyopathy: Two Homozygous Cases with ‘Typical’ Hypertrophic Cardiomyopathy and Three New Mutations in Cases with Progression to Dilated Cardiomyopathy,” Biochemical and Biophysical Research Communications, Vol. 309, No. 2, 2003, pp. 391-398. doi:10.1016/j.bbrc.2003.08.014
[15] B. Xin, E. Puffenberger, J. Tumbush, J. R. Bockoven and H. Wang, “Homozygosity for a Novel Splice Site Mutation in the Cardiac Myosin-Binding Protein C Gene Causes Severe Neonatal Hypertrophic Cardiomyopathy,” American Journal of Medical Genetics Part A, Vol. 143A, No. 22, 2007, pp. 2662-2667. doi:10.1002/ajmg.a.31981
[16] K. Zahka, K. Kalidas, M. A. Simpson, H. Cross, B. B. Keller, C. Galambos, K. Gurtz, M. A. Patton and A. H. Crosby, “Homozygous Mutation of MYBPC3 Associated with Severe Infantile Hypertrophic Cardiomyopathy at High Frequency among the Amish,” Heart, Vol. 94, No. 10, 2008, pp. 1326-1330. doi:10.1136/hrt.2007.127241
[17] C. Moos, C. M. Mason, J. M. Besterman, I. N. Feng and J. H. Dubin, “The Binding of Skeletal Muscle C-Protein to F-Actin, and Its Relation to the Interaction of Actin with Myosin Subfragment-1,” Journal of Molecular Biology, Vol. 124, No. 4, 1978, pp. 571-586. doi:10.1016/0022-2836(78)90172-9
[18] S. P. Harris, C. R. Bartley, T. A. Hacker, K. S. McDonald, P. S. Douglas, M. L. Greaser, P. A. Powers and R. L. Moss, “Hypertrophic Cardiomyopathy in Cardiac Myosin Binding Protein-C Knockout Mice,” Circulation Research, Vol. 90, No. 5, 2002, pp. 594-601. doi:10.1161/01.RES.0000012222.70819.64
[19] L. Carrier, G. Bonne, E. Bahrend, B. Yu, P. Richard, F. Niel, B. Hainque, C. Cruaud, F. Gary, S. Labeit, J. B. Bouhour, O. Dubourg, M. Desnos, A. A. Hagege, R. J. Trent, M. Komajda, M. Fiszman and K. Schwartz, “Organization and Sequence of Human Cardiac Myosin Binding Protein C Gene (MYBPC3) and Identification of Mutations Predicted to Produce Truncated Proteins in Familial Hypertrophic Cardiomyopathy,” Circulation Research, Vol. 80, No. 3, 1997, pp. 427-434.
[20] M. Gautel, O. Zuffardi, A. Freiburg and S. Labeit, “Phosphorylation Switches Specific for the Cardiac Isoform of Myosin Binding Protein-C: A Modulator of Cardiac Contraction?” The EMBO Journal, Vol. 14, No. 9, 1995, pp. 1952-1960.
[21] E. Flashman, C. Redwood, J. Moolman-Smook and H. Watkins, “Cardiac Myosin Binding Protein C: Its Role in Physiology and Disease,” Circulation Research, Vol. 94, No. 10, 2004, pp. 1279-1289. doi:10.1161/01.RES.0000127175.21818.C2
[22] H. Niimura, K. K. Patton, W. J. McKenna, J. Soults, B. J. Maron, J. G. Seidman and C. E. Seidman, “Sarcomere Protein Gene Mutations in Hypertrophic Cardiomyopathy of the Elderly,” Circulation, Vol. 105, No. 4, 2002, pp. 446-451. doi:10.1161/hc0402.102990
[23] P. Richard, P. Charron, L. Carrier, C. Ledeuil, T. Cheav, C. Pichereau, A. Benaiche, R. Isnard, O. Dubourg, M. Burban, J. P. Gueffet, A. Millaire, M. Desnos, K. Schwartz, B. Hainque and M. Komajda, “Hypertrophic Cardiomyopathy: Distribution of Disease Genes, Spectrum of Mutations, and Implications for a Molecular Diagnosis Strategy,” Circulation, Vol. 107, No. 17, 2003, pp. 2227-2232. doi:10.1161/01.CIR.0000066323.15244.54
[24] S. L. Van Driest, V. C. Vasile, S. R. Ommen, M. L. Will, J. A. Tajik, B. J. Gersh and J. M. Ackerman, “Myosin Binding Protein C Mutations and Compound Heterozygosity in Hypertrophic Cardiomyopathy,” Journal of the American College of Cardiology, Vol. 44, No. 9, 2004, pp. 1903-1910. doi:10.1016/j.jacc.2004.07.045
[25] J. L. Theis, J. M. Bos, J. D. Theis, D. V. Miller, J. A. Dearani, H. V. Schaff, B. J. Gersh, S. R. Ommen, R. L. Moss and M. J. Ackerman, “Expression Patterns of Cardiac Myofilament Proteins: Genomic and Protein Analysis of Surgical Myectomy Tissue from Patients with Obstructive Hypertrophic Cardiomyopathy,” Circulation: Heart Failure, Vol. 2, No. 4, 2009, pp. 325-333. doi:10.1161/CIRCHEARTFAILURE.108.789735
[26] E. R. Blough, E. R. Rennie, F. Zhang and P. J. Reiser, “Enhanced Electrophoretic Separation and Resolution of Myosin Heavy Chains in Mammalian and Avian Skeletal Muscles,” Analytical Biochemistry, Vol. 233, No. 1, 1996, pp. 31-35. doi:10.1006/abio.1996.0003
[27] P. J. Reiser and W. O. Kline, “Electrophoretic Separation and Quantitation of Cardiac Myosin Heavy Chain Isoforms in Eight Mammalian Species,” American Journal of Physiology, Vol. 274, No. 3, 1998, pp. H1048-H1053.
[28] A. Shevchenko, M. Wilm, O. Vorm and M. Mann, “Mass Spectrometric Sequencing of Proteins Silver-Stained Polyacrylamide Gels,” Analytical Chemistry, Vol. 68, No. 5, pp. 850-858. doi:10.1021/ac950914h
[29] J. Gobom, E. Nordhoff, E. Mirgorodskaya, R. Ekman and P. Roepstorff, “Sample Purification and Preparation Technique Based on Nano-Scale Reversed-Phase Columns for the Sensitive Analysis of Complex Peptide Mixtures by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry,” Journal of Mass Spectrometry, Vol. 34, No. 2, 1999, pp. 105-116. doi:10.1002/(SICI)1096-9888(199902)34:2<105::AID-JMS768>3.0.CO;2-4
[30] M. Hass, M. Westerkofsky, S. Muller, B. Becker-Ziaja, C. Busch and S. Gunther, “Mutational Analysis of the Lassa Virus Promoter,” Journal of Virology, Vol. 80, No. 24, 2006, pp. 12414-12419. doi:10.1128/JVI.01374-06
[31] E. Flashman, L. Korki, H. Watkins, C. Redwood and J. Moolman-Smook, “Support for a Trimeric Collar of Myosin Binding Protein C in Cardiac and Fast Skeletal Muscle, but Not in Slow Skeletal Muscle,” FEBS Letters, Vol. 582, No. 3, 2008, pp. 434-438. doi:10.1016/j.febslet.2008.01.004
[32] P. Bork, L. Holm and C. Sander, “The Immunoglobulin Fold. Structural Classification, Sequence Patterns and Common Core,” Journal of Molecular Biology, Vol. 242, No. 4, 1994, pp. 309-320. doi:10.1016/S0022-2836(84)71582-8
[33] D. K. Smith and H. Xue, “Sequence Profiles of Immunoglobulin and Immunoglobulin-Like Domains,” Journal of Molecular Biology, Vol. 274, No. 4, 1997, pp. 530-545. doi:10.1006/jmbi.1997.1432
[34] S. C. Li, N. K. Goto, K. A. Williams and C. M. Deber, “Alpha-Helical, but Not Beta-Sheet, Propensity of Proline Is Determined by Peptide Environment,” Proceedings of the National Academy of Sciences of the USA, Vol. 93, No. 13, 1996, pp. 6676-6681. doi:10.1073/pnas.93.13.6676
[35] K. W. Plaxco, C. Spitzfaden, I. D. Campbell and C. M. Dobson, “Rapid Refolding of a Proline-Rich All-Beta-Sheet Fibronectin Type III Module,” Proceedings of the National Academy of Sciences of the USA, Vol. 93, No. 20, 1996, pp. 10703-10706. doi:10.1073/pnas.93.20.10703
[36] G. G. Le, F. Y. Dupradeau, C. Mura, S. Jacolot, V. Scotet, G. Esnault, A. Y. Mercier, J. Rochette and C. Ferec, “Phenotypic Expression of the C282Y/Q283P Compound Heterozygosity in HFE and Molecular Modeling of the Q283P Mutation Effect,” Blood Cells Molecules and Diseases, Vol. 30, No. 3, 2003, pp. 231-237. doi:10.1016/S1079-9796(03)00036-6
[37] G. Kunst, K. R. Kress, M. Gruen, D. Uttenweiler, M. Gautel and R. H. Fink, “Myosin Binding Protein C, a Phosphorylation-Dependent Force Regulator in Muscle That Controls the Attachment of Myosin Heads by Its Interaction with Myosin S2,” Circulation Research, Vol. 86, No. 1, 2000, pp. 51-58. doi:10.1161/01.RES.86.1.51
[38] I. Kulikovskaya, G. McClellan, J. Flavigny, L. Carrier and S. Winegrad, “Effect of MyBP-C Binding to Actin on Contractility in Heart Muscle,” The Journal of General Physiology, Vol. 122, No. 6, 2003, pp. 761-774. doi:10.1085/jgp.200308941
[39] J. M. Squire, P. K. Luther and C. Knupp, “Structural Evidence for the Interaction of C-Protein (MyBP-C) with Actin and Sequence Identification of a Possible Actin-Binding Domain,” Journal of Molecular Biology, Vol. 331, No. 3, 2003, pp. 713-724. doi:10.1016/S0022-2836(03)00781-2
[40] J. F. Shaffer, R. W. Kensler and S. P. Harris, “The Myosin-Binding Protein C Motif Binds to F-Actin in a Phosphorylation-Sensitive Manner,” The Journal of Biological Chemistry, Vol. 284, No. 18, 2009, pp. 12318-12327. doi:10.1074/jbc.M808850200

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.