Screening of the Growth-Inhibitory Effects of 168 Plant Species against Lettuce Seedlings

DOI: 10.4236/ajps.2013.45136   PDF   HTML   XML   4,642 Downloads   6,838 Views   Citations


The methanol extracts of 168 plant species from 68 families were evaluated for their inhibitory activity against lettuce seedling elongation. Among the plant species tested, 12 species had EC50 values for radicle growth inhibition ranging from 0.01 to 5.00 mg fresh weight equivalent mL-1. Enterolobium contortisiliquum, a traditionally used herbal medicine, exhibited the strongest inhibitory activity (estimated EC50: 0.28 fresh weight equivalent mL-1). Among the 12 species, Pachysandra terminalis, Tamarindus indica, and Albizia guachapele required investigation, because only little has been reported about their chemical constituents to date. The data in the present study would be useful in finding new lead compounds for natural herbicides.

Share and Cite:

T. Takemura, E. Sakuno, T. Kamo, S. Hiradate and Y. Fujii, "Screening of the Growth-Inhibitory Effects of 168 Plant Species against Lettuce Seedlings," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1095-1104. doi: 10.4236/ajps.2013.45136.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. G. Creamer, M. A. Bennett, B. R. Stinner and J. Cardina, “A Comparison of Four Processing Tomato Production Systems Differing in Cover Crop and Chemical Inputs,” Journal of the American Society for Horticultural Science, Vol. 121, No. 3, 1996, pp. 559-568.
[2] S. A. Walters and B. G. Young, “Effect of Herbicide and Cover Crop on Weed Control in No-Tillage Jack-o-Lantern Pumpkin (Cucurbita pepo L.) Production,” Crop Protection, Vol. 29, No. 1, 2010, pp. 30-33. doi:10.1016/j.cropro.2009.09.001
[3] B. J. Mazur and S. C. Falco, “The Development of Herbicide Resistant Crops,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 40, 1989, pp. 441-470. doi:10.1146/annurev.pp.40.060189.002301
[4] Z. L. Zhu and D. L. Chen, “Nitrogen Fertilizer Use in China-Contributions to Food Production, Impacts on the Environment and Best Management Strategies,” Nutrient Cycling in Agroecosystems, Vol. 63, No. 2-3, 2002, pp. 117-127. doi:10.1023/A:1021107026067
[5] W. Zheng, S. R. Yates, S. K. Papiernik and M. Guo, “Transformation of Herbicide Propachlor by an Agrochemical Thiourea,” Environmental Science and Technology, Vol. 38, No. 24, 2004, pp. 6855-6860. doi:10.1021/es049384+
[6] A. R. Putnam and C. S. Tang, “Allelopathy: State of the Science,” In: A. R. Putnam & C. S. Tang, Eds., The Science of Allelopathy, John Wiley & Sons, New York, 1986, pp. 1-19.
[7] J. B. Lovett, “Changing Perceptions of Allelopathy and Biological Control,” Biological Agriculture and Horticulture, Vol. 8, No. 2, 1991, pp. 89-100. doi:10.1080/01448765.1991.9754583
[8] H. P. Singh, D. R. Batish and R. K. Kohli, “Allelopathic Interactions and Allelochemicals: New Possibilities for Sustainable Weed Management,” Critical Reviews in Plant Sciences, Vol. 22, No. 3-4, 2003, pp. 239-311. doi:10.1080/713610858
[9] G. Mitchell, D. W. Bartlett, T. E. Fraser, T. R. Hawkes, D. C. Holt, J. K.Townson and R. A.Wichert, “Mesotrione: A New Selective Herbicide for Use in Maize,” Pest Management Science, Vol. 57, No. 2, 2001, pp. 120-128. doi:10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E
[10] R. Beaudegnies, A. J. F. Edmunds, T. E. M. Fraser, R. G. Hall, T. R. Hawkes, G. Mitchell, J. Schaetzer, S. Wendeborn and J. Wibley, “Herbicidal 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: A Review of the Triketone Chemistry Story from a Syngenta Perspective,” Bioorganic and Medicinal Chemistry, Vol. 17, No. 12, 2009, pp. 4134-4152. doi:10.1016/j.bmc.2009.03.015
[11] Y. Fujii, S. S. Parvez, M. M. Parvez, Y. Ohmae and O. Iida, “Screening of 239 Medicinal Plant Species for Allelopathic Activity Using the Sandwich Method,” Weed Biology and Management, Vol. 3, No. 4, 2003, pp. 233- 241. doi:10.1046/j.1444-6162.2003.00111.x
[12] Y. Fujii, T. Shibuya, K. Nakatani, T. Itani, S. Hiradate and M. M. Parvez, “Assessment Method for Allelopathic Effect from Leaf Litter Leachates,” Weed Biology and Management, Vol. 4, No. 1, 2004, pp. 19-23. doi:10.1111/j.1445-6664.2003.00113.x
[13] C. I. M. Ono, R. Miyaura, M. L. T. Figueroa, E. L. R. Salgado and Y. Fujii, “Screening of 170 Peruvian Plant Species for Allelopathic Activity by Using the Sandwich Method,” Weed Biology and Management, Vol. 12, No. 1, 2012, pp. 1-11. doi:10.1111/j.1445-6664.2011.00429.x
[14] Y. Fujii, “Screening of Allelopathic Candidates by New Specific Discrimination, and Assessment Methods for Allelopathy, and the Inhibition of L-DOPA [L-3,4-Dihydroxyphenylalanine] as the Allelopathic Substance from the Most Promising Velvetbean (Mucuna pruriens),” Bulletin of Natural Institute Agro-Environmental Sciences, Vol. 10, 1994, pp. 115-218. (in Japanese with English summary)
[15] Y. Fujii and T. Shibuya, “A New Assessment Method for Allelopathy by Agar Medium II. Mixed Culture of Alleopathic Condidates with Acceptor Plants in Agar Medium,” Weed Research Japan, Vol. 36, 1991, pp. 152-153. (in Japanese)
[16] G. Hashimoto and Y. Nishimoto, “Illustrated Cyclopedia of Brazilian Medicinal Plants,” Aboc-sha Press, Kamakura, 1996, p. 676.
[17] Y. Mimaki, H. Harada, C. Sakuma, M. Haraguchi, S. Yui, T. Kudo, M. Yamazaki and Y. Sashida, “Contortisiliosides A-G: Isolation of Seven New Triterpene Bisdesmosides from Enterolobium contortisiliquum and Their Cytotoxic Activity,” Helvetica Chimica Acta, Vol. 87, No. 4, 2004, pp. 851-865. doi:10.1002/hlca.200490083
[18] S. Morita, M. Ito and J. Harada, “Screening of an Allelopathic Potential in Arbor Species,” Weed Biology and Management, Vol. 5, No. 1, 2005, pp. 26-30. doi:10.1111/j.1445-6664.2005.00151.x
[19] S. Hiradate, S. Morita, A. Furubayashi, Y. Fujii and J. Harada, “Plant Growth Inhibition by cis-Cinnamoyl Glucosides and cis-Cinnamic Acid,” Journal of Chemical Ecology, Vol. 31, No. 3, 2005, pp. 591-601. doi:10.1007/s10886-005-2047-0
[20] F. H. Utech and S. Kawano, “Floral Vascular Anatomy of Convallaria majalis L. and C. keiskei Miq. (Liliaceae- Convallariinae) ,” Journal of Plant Research, Vol. 89, No. 3, 1976, pp. 173-182. doi:10.1007/BF02488340
[21] R. Schrutka-Rechtenstamm, B. Kopp and W. Löffelhardt, “Bioconversions Leading to Minor Cardiac Glycosides in Convallaria majalis,” Phytochemistry, Vol. 25, No. 5, 1986, pp. 1107-1109. doi:10.1016/S0031-9422(00)81563-0
[22] P. Verron, M. Nard and J. Cohat, “In Vitro Organogenic Competence of Different Organs and Tissues of Lily of the Valley ‘Grandiflora of Nantes’,” Plant Cell Tissue and Organ Culture, Vol. 40, No. 3, 1995, pp. 237-242. doi:10.1007/BF00048129
[23] P. A. Chadhokar, “Gliricidia maculata: A Promising Legume Fodder Plant,” World Animal Review, Vol. 44, 1982, pp. 36-43.
[24] L. E. Gale, M. R. Gibson and P. M. Scott, “Investigation of the Reported Toxicity to Rats of Gliricidia sepium, Jacq.,” Science, Vol. 120, No. 3117, 1954, pp. 500-501. doi:10.1126/science.120.3117.500
[25] M. Ramamoorthy and K. Paliwal, “Allelopathic Compounds in Leaves of Gliricidia sepium (Jacq.) Kunth ex walp. and Its Effect on Sorghum vulgare L.,” Journal of Chemical Ecology, Vol. 19, No. 8, 1993, pp. 1691-1701. doi:10.1007/BF00982301
[26] M. Tomita, T. Kikuchi, S. Uyeo, T. Nishinaga, M. Yasunishi and A. Yamamoto, “Pachysandra Alkaloids. I. Systematic Isolation and Characterization of Alkaloids,” Yakugaku Zasshi, Vol. 87, No. 3, 1967, pp. 215-227. (in Japanese with English summary)
[27] S. Funayama, T. Noshita, K. Shinoda, N. Haga, S. Nozoe, M. Hayashi and K. Komiyama, “Cytotoxic Alkaloids of Pachysandra terminalis,” Biological and Pharmaceutical Bulletin, Vol. 23, No. 2, 2000, pp. 262-264. doi:10.1248/bpb.23.262
[28] R. N. Prasad, S. Viswanathan, J. R. Devi, V. Nayak, V. C. Swetha, B. R. Archana, N. Parathasarathy and J. Rajkumar, “Preliminary Phytochemical Screening and Antimicrobial Activity of Samanea saman,” Journal of Medicinal Plants Research, Vol. 2, No. 10, 2008, pp. 268- 270.
[29] M. P. Raghavendra, S. Satish and K. A. Raveesha, “In Vitro Antibacterial Potential of Alkaloids of Samanea saman (Jacq.) Merr. against Xanthomonas and Human Pathogenic Bacteria,” World Journal of Agricultural Sciences, Vol. 4, No. 1, 2008, pp. 100-105.
[30] M. Noor and M. A. Khan, “Allelopathic Potential of Albizia samans Merr.,” Pakistan Journal of Botany, Vol. 26, 1994, pp 139-147.
[31] S. S. Parvez, M. M. Parvez, E. Nishihara, H. Gemma and Y. Fujii, “Tamarindus indica L. Leaf Is a Source of Allelopathic Substance,” Plant Growth Regulation, Vol. 40, No. 2, 2003, pp. 107-115. doi:10.1023/A:1024237426416
[32] M. H. Wishnie, D. H. Dent, E. Mariscal, J. Deago, N. Cedeño, D. Ibarra, R. Condit and P. M. S. Ashton, “Initial Performance and Reforestation Potential of 24 Tropical Tree Species Planted across a Precipitation Gradient in the Republic of Panama,” Forest Ecology and Management, Vol. 243, No. 1, 2007, pp. 39-49. doi:10.1016/j.foreco.2007.02.001
[33] Y. Su, C. Li, Y. Gao, L. Di, X. Zhang and D. Guo, “Acryloylated Glucose 3-Nitropropanoates from Indigofera kirilowii,” Journal of Natural Products, Vol. 68, No. 12, 2005, pp. 1785-1786. doi:10.1021/np050268+
[34] W. S. Garcez, F. R. Garcez, N. K. Honda and A. J. R. da Silva, “A Nitropropanoyl-Glucopyranoside from Indigofera suffruticosa,” Phytochemistry, Vol. 28, No. 4, 1989, pp. 1251-1252. doi:10.1016/0031-9422(89)80220-1
[35] V. Lodha, H. A. Khan and A. Ghanim, “5,7,4′-Trimethoxy-4-Phenylcoumarin from Roots of Indigofera oblongifolia,” Journal of Indian Chemical Society, Vol. 75, No. 8, 1998, p. 485.
[36] M. Benn, D. Mcewan, M. A. Pass and W. Majak, “Three Nitropropanoyl Esters of Glucose from Indigofera linnaei,” Phytochemistry, Vol. 31, No. 7, 1992, pp. 2393- 2395. doi:10.1016/0031-9422(92)83284-6
[37] D. D. McPherson, C. T. Che, G. A. Cordell, D. D. Soejarto, J. M. Pezzuto and H. H. S. Fong, “Diterpenoids from Caesalpinia pulcherrima,” Phytochemistry, Vol. 25, No. 1, 1985, pp. 167-170. doi:10.1016/S0031-9422(00)94522-9
[38] J. S. Roach, S. McLean, W. F. Reynolds and W. F. Tinto, “Cassane Diterpenoids of Caesalpinia pulcherrima,” Journal of Natural Products, Vol. 66, No. 10, 2003, pp. 1378- 1381. doi:10.1021/np0302955
[39] S. Awale, T. Z. Linn, Y. Tezuka, S. K. Kalauni, A. H. Banskota, F. Attamimi, J. Ueda and S. Kadota, “Constituents of Caesalpinia crista from Indonesia,” Chemical and Pharmaceutical Bulletin, Vol. 54, No. 2, 2006, pp. 213-218. doi:10.1248/cpb.54.213
[40] M. Namikoshi, H. Nakata and T. Saitoh, “Homoisoflavonoids from Caesalpinia sappan,” Phytochemistry, Vol. 26, No. 6, 1987, pp. 1831-1833. doi:10.1016/S0031-9422(00)82298-0
[41] K. V. N. S. Srinivas, Y. K. Rao, I. Mahender, B. Das, K. V. S. R. Krishna, K. H. Kishore and U. S. N. Murty, “Flavanoids from Caesalpinia pulcherrima,” Phytochemistry, Vol. 63, No. 7, 2003, pp. 789-793. doi:10.1016/S0031-9422(03)00325-X
[42] M. V. Bahia, J. B. dos Santos, J. P. David and J. M. David, “Biflavonoids and Other Phenolics from Caesalpinia pyramidalis (Fabaceae),” Journal of the Brazilian Chemical Society, Vol. 16, No. 6B, 2005, pp. 1402-1405. doi:10.1590/S0103-50532005000800017
[43] K. K. Awasthi, A. Kumar and K. Misra, “Two Ellagitannins from the Stem Bark of Caesalpinia pulcherrima,” Phytochemistry, Vol. 19, No. 9, 1980, pp. 1995-1997. doi:10.1016/0031-9422(80)83020-2
[44] T. Sekine, N. Fukasawa, F. Ikegami, K. Saito, Y. Fujii and I. Murakoshi, “Structure and Synthesis of a New Monoterpenoidal Carboxiamide from the Seeds of the Thai Medicinal Plant Acacia concinna,” Chemical and Pharmaceutical Bulletin, Vol. 45, No. 1, 1997, pp. 148-151. doi:10.1248/cpb.45.148
[45] B. Meera, J. Chander and S. B. Kalidhar, “A Review on the Chemistry and Bioactivity of the Acacia spp.,” Journal of Medicinal and Aromatic Plant Sciences, Vol. 27, 2005, pp. 51-90.
[46] V. A. Kerber and G. A. A. B. Silva, “Flavonóides da Acacia longifolia (Andr.) Willd.-Leguminosae-Mimosoideae,” Revista Brasileira de Farmacognosia, Vol. 74, No. 1, 1993, pp. 16-18.
[47] M. V. Lipscomb and E. T. Nilsen, “Environmental and Physiological Factors Influencing the Natural Distribution of Evergreen and Deciduous Ericaceous Shrubs on Northeastand Southwest-Facing Slopes of the Southern Appalachian Mountains. II. Water Relations,” American Journal of Botany, Vol. 77, No. 4, 1990, pp. 517-526. doi:10.2307/2444386
[48] B. D. Clinton, L. R. Boring and W. T. Swank, “Regeneration Patterns in Canopy Gaps of Mixed-Oak Forests of the Southern Appalachians: Influences of Topographic Position and Evergreen Understory,” American Midland Naturalist, Vol. 132, No. 2, 1994, pp. 308-319. doi:10.2307/2426587
[49] H. Zhu and A. U. Mallik, “Interactions between Kalmia and Black Spruce: Isolation and Identification of Allelopathic Compounds,” Journal of Chemical Ecology, Vol. 20, No. 2, 1994, pp. 407-421. doi:10.1007/BF02064447
[50] S. Hiradate, S. Morita, H. Sugie, Y. Fujii and J. Harada, “Phytotoxic cis-Cinnamoyl Glucosides from Spirea thunbergii,” Phytochemistry, Vol. 65, No. 6, 2004, pp. 731- 739. doi:10.1016/j.phytochem.2004.01.010
[51] S. Morita, S. Hiradate, Y. Fujii and J. Harada, “cis-Cinnamoyl Glucoside as a Major Plant Growth Inhibitor Contained in Spiraea prunifolia,” Plant Growth Regulation, Vol. 46, No. 2, 2005, pp. 125-131. doi:10.1007/s10725-005-8086-2
[52] S. Hiradate, K. Ohse, A. Furubayashi and Y. Fujii, “Quantitative Evaluation of Allelopathic Potentials in Soils: Total Activity Approach,” Weed Science, Vol. 58, No. 3, 2010, pp. 258-264. doi:10.1614/WS-D-09-00085.1

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.