Share This Article:

Modal Resistance of Spiral Antenna

Abstract Full-Text HTML XML Download Download as PDF (Size:503KB) PP. 223-228
DOI: 10.4236/jemaa.2013.55036    4,804 Downloads   6,771 Views   Citations

ABSTRACT

This paper proposes a quasi-static conformal mapping analysis to analytically evaluate the input resistance of Archimedean spiral antenna at its radiation region. The deviation from the original constructs of band theory for two-wire spiral antennas leads to the concept of common slot-line mode radiation. The per-unit-length capacitance and the characteristic impedance of the quasi-TEM fundamental propagating mode in periodic coplanar waveguide (PCPW) structure are obtained in terms of spiral parameters including substrate properties. This formula enables little computational effort on the computation of input resistance at the radiation mode of balanced-excited two-arm Archimedean spiral antennas. The numerical simulation demonstrates the accuracy of derived formulas both in free space and when a dielectric layer is presented.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Chen and G. Huff, "Modal Resistance of Spiral Antenna," Journal of Electromagnetic Analysis and Applications, Vol. 5 No. 5, 2013, pp. 223-228. doi: 10.4236/jemaa.2013.55036.

References

[1] J. Kaiser, “The Archimedean Two-Wire Spiral Antenna,” IRE Transactions on Antennas and Propagation, Vol. 8, No. 3, 1960, pp. 312-323. doi:10.1109/TAP.1960.1144840
[2] W. Curtis, “Spiral Antennas,” IRE Transactions on Antennas and Propagation, Vol. 8, No. 3, 1960, pp. 298-306. doi:10.1109/TAP.1960.1144850
[3] H. Nakano, “Helical and Spiral Antennas: A Numerical Approach,” John Wiley & Sons, New York, 1987.
[4] H. Nakano, K. Hirose, I. Ohshima and J. Yamauchi, “An integral Equation and Its Application to Spiral Antennas on Semi-Infinite Dielectric Materials,” IEEE Transac tions on Antennas Propagation, Vol. 46, No. 2, 1998, pp. 267-274. doi:10.1109/8.660972
[5] C. Fumeaux, D. Baumann and R. Vahldieck, “Finite Volume Time-Domain Analysis of a Cavity-Backed Archimedean Spiral Antenna,” IEEE Transactions on Antennas Propagation, Vol. 54, No. 3, 2006, pp. 844-851. doi:10.1109/TAP.2006.869935
[6] C. W. Penney and R. J. Luebbers, “Input Impedance, Radiation Pattern, and Radar Cross Section of Spiral Antennas Using FDTD,” IEEE Transactions on Antennas Propagation, Vol. 42, No. 9, 1994, pp. 1328-1332. doi:10.1109/8.318663
[7] H. Nakano, H. Yasui and J. Yamauchi, “Numerical Analysis of Two-Arm Spiral Antennas Printed on a Finite-Size Dielectric Substrate,” IEEE Transactions on Antennas Propagation, Vol. 50, No. 3, 2002, pp. 362-370. doi:10.1109/8.999628
[8] R. Li and G. Ni, “Numerical Analysis of 4-Arm Archimedian Printed Spiral Antenna,” IEEE Transactions on Magnetics, Vol. 33, No. 2, 1997, pp. 1512-1515. doi:10.1109/20.582548
[9] T. Ozdemir, J. L. Volakis and M. W. Nurnberger, “Analysis of Thin Multioctave Cavity-Backed Slot Spiral Antennas,” IEE Prodeedings H Microwaves, Antennas and Propagation, Vol. 146, No. 6, 1999, pp. 447-454.
[10] L. Zheng and J.-M. Jin, “Modeling and Simulation of Broad-Band Antennas Using the Time-Domain Finite Element Method,” IEEE Transactions on Antennas Propagation, Vol. 53, No. 12, 2005, pp. 4099-4110. doi:10.1109/TAP.2005.859905
[11] T.-K. Chen and G. H. Huff, “Stripline-Fed Archimedean Spiral Antenna,” IEEE Antennas Wireless Propagation Letters, Vol. 10, 2011, pp. 346-349. doi:10.1109/LAWP.2011.2141971
[12] D. J. Muller and K. Sarabandi, “Design and Analysis of a 3-Arm Spiral Antenna,” IEEE Transactions on Antennas Propagation, Vol. 55, No. 2, 2007, pp. 258-266. doi:10.1109/TAP.2006.889798
[13] C. Liu, Y. Lu, C. Du, J. Cui and X. Shen, “The Broad band Spiral Antenna Design Based on Hybrid Backed Cavity,” IEEE Transactions on Antennas Propagation, Vol. 58, No. 6, 2010, pp. 1876-1882. doi:10.1109/TAP.2010.2041147
[14] M. N. Afsar, W. Yong and R. Cheung, “Analysis and Measurement of a Broadband Spiral Antenna,” IEEE Antennas Propagation Magazine, Vol. 46, No. 1, 2004, pp. 59-64. doi:10.1109/MAP.2004.1296145
[15] B. Cheo, V. Rumsey and W. Welch, “A Solution to the Frequency-Independent Antenna Problem,” IRE Transactions on Antennas Propagation, Vol. 9, No. 6, 1961, pp. 527-534. doi:10.1109/TAP.1961.1145057
[16] M. Lee, B. A. Kramer, C.-C. Chen and J. L. Volakis, “Distributed Lumped Loads and Lossy Transmission Line Model for Wideband Spiral Antenna Miniaturization and Characterization,” IEEE Transactions on Antennas Propagation, Vol. 55, No. 10, 2007, pp. 2671-2678. doi:10.1109/TAP.2007.905823
[17] M. Kim, H. Choo and I. Park, “Two-Arm Microstrip Spiral Antenna for Multi-Beam Pattern Control,” Electronics Letters, Vol. 41, No. 11, 2005, pp. 627-629. doi:10.1049/el:20051110
[18] J. Dyson, “The Equiangular Spiral Antenna,” IRE Trans actions on Antennas Propagation, Vol. 7, No. 2, 1959, pp. 181-187. doi:10.1109/TAP.1959.1144653
[19] Z. Lou and J.-M. Jin, “Modeling and Simulation of Broad-Band Antennas Using the Time-Domain Finite Element Method,” IEEE Transactions on Antennas Propagation, Vol. 53, No. 12, 2005, pp. 4099-4110. doi:10.1109/TAP.2005.859905
[20] M. McFadden and W. R. Scott, “Analysis of the Equiangular Spiral Antenna on a Dielectric Substrate,” IEEE Transactions on Antennas Propagation, Vol. 55, No. 11, 2007, pp. 3163-3171. doi:10.1109/TAP.2007.908838
[21] S. S. Bedair and I. Wolff, “Fast, Accurate and Simple Approximate Analytic Formulas for Calculating the Parameters of Supported Coplanar Waveguides for (M)MIC’s,” IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 1, 1992, pp. 41-48. doi:10.1109/22.108321
[22] G. Ghione and C. U. Naldi, “Coplanar Waveguides for MMIC Applications: Effect of Upper Shielding, Conductor Backing, Finite-Extent Ground Planes, and Line-to Line Coupling,” IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 3, 1987, pp. 260-267. doi:10.1109/TMTT.1987.1133637
[23] R. E. Collin, “Foundations for Microwave Engineering,” 2nd Edition, Wiley-IEEE Press, New York, 2000.
[24] T. A. Driscoll and L. N. Trefethen, “Schwarz-Christoffel Mapping,” Cambridge University Press, Cambridge, 2002. doi:10.1017/CBO9780511546808
[25] I. S. Gradshte?n and I. M. Ryzhik, “Table of Integrals, Series and Products,” 7th Edition, Academic Press, Oxford, 2007.
[26] M. Riaziat, R. Majidi-Ahy and I. J. Feng, “Propagation Modes and Dispersion Characteristics of Coplanar Wave guides,” IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 3, 1990, pp. 245-251. doi:10.1109/22.45333
[27] C. Erli and S. Y. Chou, “Characteristics of Coplanar Transmission Lines on Multilayer Substrates: Modeling and Experiments,” IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 6, 1997, pp. 939-945. doi:10.1109/22.588606
[28] G. Ghione and M. Goano, “Revisiting the Partial-Capacitance Approach to the Analysis of Coplanar Transmission Lines on Multilayered Substrates,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 9, 2003, pp. 2007-2014. doi:10.1109/TMTT.2003.815873
[29] RT/Duroid? Laminates: Rogers Corporation, Rogers, CT.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.