Application of Computer-Aided Drug Design to Traditional Chinese Medicine


Computer-aided drug design (CADD) is an interdisciplinary subject, playing a pivotal role during new drug research and development, especially the discovery and optimization of lead compounds. Traditional Chinese Medicine (TCM) modernization is the only way of TCM development and also an effective approach to the development of new drugs and the discovery of potential drug targets (PDTs). Discovery and validation of PTDs has become the “bottle-neck” restricted new drug research and development and is urgently solved. Innovative drug research is of great significance and bright prospects. This paper mainly discusses the “druggability” and specificity of PTDs, the “druglikeness” of drug candidates, the methods and technologies of the discovery and validation of PTDs and their application. It is very important to achieve the invention and innovation strategy “from gene to drug”. In virtue of modern high-new technology, especially CADD, combined with TCM theory, research and develop TCM and initiate an innovating way fitting our country progress. This paper mainly discusses CADD and their application to drug research, especially TCM modernization.

Share and Cite:

J. Yang, "Application of Computer-Aided Drug Design to Traditional Chinese Medicine," International Journal of Organic Chemistry, Vol. 3 No. 1A, 2013, pp. 1-16. doi: 10.4236/ijoc.2013.31A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Cheung, “TCM: Made in China,” Nature, Vol. 480, No. 7378, 2011, pp. S82-S83. doi:10.1038/480S82a
[2] P. Tian, “Convergence: Where West meets East,” Nature, Vol. 480, No. 7378, 2011, pp. S84-S86. doi:10.1038/480S84a
[3] J. Yang, “Systematical Analysis of the Application of Chinese Traditional Medicine Informatics to Diabetes Proved Recipes,” Journal of Diabetes Research & Clinical Metabolism, Vol. 1, No. 1, 2012, p. 10. doi:10.7243/2050-0866-1-10
[4] J. Yang, “Application of Chinese Traditional Medicine Informatics to Diabetes Proved Recipes,” World Clinical Drugs, Vol. 29, No. 2, 2008, pp. 94-100.
[5] J. Yang, “Idea and Strategy for New Drug Research,” World Science-Technology R & D, Vol. 21, No. 5, 1999, pp. 64-66.
[6] J. Yang, W. Y. Hua and S. X. Peng, “New trend of CADD—Receptor Structure-Based Drug Design,” Journal of China Pharmaceutical University, Vol. 24, No. 3, 1993, pp. 187-192.
[7] J. Yang and W. Y. Hua, “Basic Pharmacophore for Some Antithrombotic Agents with Combined Thromboxane Receptor Antagonists (TXRA)/Thromboxine Synthase Inhibitor (TXSI) Activities,” Drug Development Research, Vol. 39, No. 2, 1996, pp. 197-200. doi:10.1002/(SICI)1098-2299(199610)39:2<197::AID-DDR14>3.0.CO;2-9
[8] P. J. Meek, Z. W. Liu, L. F. Tian, C. Y. Wang, W. J. Welsh and R. J. Zauhar, “Shape Signatures: Speeding up Computer Aided Drug Discovery,” Drug Discovery Today, Vol. 11, No. 19-20, 2006, pp. 895-904. doi:10.1016/j.drudis.2006.08.014
[9] The International 311C90 Long-term Study Group, “The Long-Term Tolerability and Efficacy of Oral Zolmitriptan in the Acute Treatment of Migraine,” Headache, Vol. 38, No. 3, 1998, pp. 173-183. doi:10.1046/j.1526-4610.1998.3803173.x
[10] T. H. Keller, A. Pichota and Z. Yin, “A Practical View of ‘Druggability’,” Current Opinion in Chemical Biology, Vol. 10, No. 4, 2006, pp. 357-361. doi:10.1016/j.cbpa.2006.06.014
[11] C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews, Vol. 46, No. 1-3, 2001, pp. 3-26. doi:10.1016/S0169-409X(00)00129-0
[12] C. A. Lipinski, “Leadand Drug-Like Compounds: The Rule-of-Five Revolu-tion,” Drug Discovery Today: Technologies, Vol. 1, No. 4, 2004, pp. 337-341. doi:10.1016/j.ddtec.2004.11.007
[13] W. P. Waters and M. A. Mureko, “Prediction of DrugLikeness,” Advanced Drug Delivery Reviews, Vol. 54, No. 3, 2002, pp. 255-271. doi:10.1016/S0169-409X(02)00003-0
[14] Y. Sugiyama, “Druggability: Selecting Optimized Drug Candidates,” Drug Discovery Today, Vol. 10, No. 23-24, 2005, pp. 1577-1579. doi:10.1016/S1359-6446(05)03675-5
[15] I. Muegge, “Selection Criteria for Drug-Like Compounds,” Medicinal Research Reviews, Vol. 23, No. 3, 2003, pp. 30232l. doi:10.1002/med.10041
[16] A. L. Hopkins and C. R. Groom, “The Druggable Genome,” Medicinal Research Reviews, Vol. 1, No. 9, 2002, pp. 727-730. doi:10.1038/nrd892
[17] D. Brown and G. Superti-Furga, “Rediscovering the Sweet Spot in Drug Discovery,” Drug Discovery Today, Vol. 8, No. 23, 2003, pp. 1067-1077. doi:10.1016/S1359-6446(03)02902-7
[18] J. Owens, “Target Validation: Determining Druggability,” Nature Reviews Drug Discovery, Vol. 6, No. 3, 2007, pp. 187. doi:10.1038/nrd2275
[19] D. W. Walke, C. Han, J. Shaw, E. Wann, B. Zambrowicz and A. Sands, “In Vivo Drug Target Discovery: Identifying the Best Targets from the Genome,” Current Opinion in Biotechnology, Vol. 12, No. 6, 2001, pp. 626-631. doi:10.1016/S0958-1669(01)00271-3
[20] Y. Z. Chen and D. G. Zhi, “Ligand-Protein Inverse Docking and Its Potential Use in the Computer Search of Protein Targets of a Small Molecule,” Proteins, Vol. 43, No. 2, 2001, pp. 217-226. doi:10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G
[21] Q. X. Yue, Z. W. Cao, S. H. Guan, X. H. Liu, L. Tao, W. Y. Wu, Y. X. Li, P. Y. Yang, X. Liu and D. A. Guo, “Proteomic Characterization of the Cytotoxic Mechanism of Ganoderic Acid D and Computer Automated Estimation of the Possible Drug-Target Network,” Molecular & Cellular Proteomics, Vol. 7, No. 5, 2008, pp. 949-961. doi:10.1074/mcp.M700259-MCP200
[22] B. R. Stockwell, “Exploring Biology with Small Organic Molecules,” Nature, Vol. 432, No. 7019, 2004, pp. 846854. doi:10.1038/nature03196
[23] S. Peukert, J. Brendel, B. Pirard, A. Brüggemann, P. Below, H. W. Kleemann, H. Hemmerle and W. Schmidt, “Identification, Synthesis, and Activity of Novel Blockers of the Voltage-Gated Potassium Channel Kv1.5,” Journal of Medicinal Chemistry, Vol. 46, No. 4, 2003, pp. 486498. doi:10.1021/jm0210461
[24] S. Wang, C. Meades, G. Wood, A. Osnowski, S. Anderson, R. Yuill, M. Thomas, M. Mezna, W. Jackson, C. Midgley, G. Griffiths, I. Fleming, S. Green, I. McNae, S. Y. Wu, C. McInnes, D. Zheleva, M. D. Walkinshaw and P. M. Fischer, “2-Anilino-4-(Thiazol-5-yl)Pyrimidine CDK Inhibitors: Synthesis, SAR Analysis, X-Ray Crystallography, and Biological Activity,” Journal of Medicinal Chemistry, Vol. 47, No. 7, 2004, pp. 1662-1675. doi:10.1021/jm0309957
[25] G. A. Gutman, K. G. Chandy, S. Grissmer, M. Lazdunski, D. McKinnon, L. A. Pardo, G. A. Robertson, B. Rudy, M. C. Sanguinetti, W. Stuhmer and X. Wang, “International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels,” Pharmacological Reviews, Vol. 57, No. 4, 2005, pp. 473-508. doi:10.1124/pr.57.4.10
[26] M. Malumbres and M. Barbacid, “To Cycle or Not to Cycle: A Critical Decision in Cancer,” Nature Reviews Cancer, Vol. 1, No. 3, 2001, pp. 222-231. doi:10.1038/35106065
[27] M. Kitagawa, H. Higashi, I. Suzuki-Takahashi, K. Segawa, S. K. Hanks, Y. Taya, S. Nishimura and A. Okuyama, “Phosphorylation of E2F-1 by Cyclin A-Cdk2,” Oncogene, Vol. 10, No. 2, 1995, pp. 229-236.
[28] W. Krek, G. Xu and D. M. Livingston, “Cyclin A-Kinase Regulation of E2F-1 DNA Binding Function Underlies Suppression of an S Phase Checkpoint,” Cell, Vol. 83, No. 7, 1995, pp. 1149-1158. doi:10.1016/0092-8674(95)90141-8
[29] S. J. McClue, D. Blake, R. Clarke, A. Cowan, L. Cummings, P. M. Fischer, M. MacKenzie, J. Melville, K. Stewart, S. Wang, N. Zhelev, D. Zheleva and D. P. Lane, “In Vitro and in Vivo Antitumor Properties of the Cyclin Dependent Kinase Inhibitor CYC202 (R-Roscovitine),” International Journal of Cancer, Vol. 102, No. 5, 2002, pp. 463-468. doi:10.1002/ijc.10738
[30] J. A. Lees and R. A. Weinberg, “Tossing Monkey Wrenches into the Clock: New Ways of Treating Cancer,” Proceedings of the National Academy of Sciences, Vol. 96, No. 8, 1999, pp. 4421-4223. doi:10.1073/pnas.96.8.4221
[31] S. Y. Wu, I. McNae, G. Kontopidis, S. J. McClue, C. McInnes, K. J. Stewart, S. Wang, D. I. Zheleva, H. Marriage, D. P. Lane, P. Taylor, P. M. Fischer and M. D. Walkinshaw, “Discovery of a Novel Family of CDK Inhibitors with the Program LIDAEUS: Structural Basis for Ligand-Induced Disordering of the Activation Loop,” Structure, Vol. 11, No. 4, 2003, pp. 399-410. doi:10.1016/S0969-2126(03)00060-1
[32] J. Singh, H. Van Vlijmen, Y. Liao, W. C. Lee, M. Cornebise, M. Harris, I. H. Shu, A. Gill, J. H. Cuervo, W. M. Abraham and S. P. Adams, “Identification of Potent and Novel a4b1 Antagonists Using in Silico Screening,” Journal of Medicinal Chemistry, Vol. 45, No. 14, 2002, pp. 2988-2993. doi:10.1021/jm020054e
[33] D. Seiffge, “Protective Effects of Monoclonal Antibody to VLA-4 on Leukocyte Adhesion and Course of Disease in adjuvant Arthritis in Rats,” The Journal of Rheumatology, Vol. 23, No. 12, 1996, pp. 2086-2091.
[34] J. B. Massague, S. W. Blain and R. S. Lo, “TGF-ßSignaling in Growth Control, Cancer, and Heritable Disorders,” Cell, Vol. 103, No. 2, 2000, pp. 295-309. doi:10.1016/S0092-8674(00)00121-5
[35] P. A. Eyers, M. Craxton, N. Morrice, P. Cohen and M. Goedert, “Conversion of SB 203580-Insensitive MAP Kinase Family Members to Drug-Sensitive Forms by a Single Amino-Acid Substitution,” Chemistry & Biology, Vol. 5, No. 6, 1998, pp. 321-328. doi:10.1016/S1074-5521(98)90170-3
[36] J. Singh, C. E. Chuaqui, P. A. Boriack-Sjodin, W.-C. Lee, T. Pontz, M. J. Corbley, H.-K. Cheung, R. M. Arduini, J. N. Mead, M. N. Newman, J. L. Papadatos, S. Bowes, S. Josiah and L. E. Ling, “Successful Shape-Based Virtual Screening: The Discovery of a Potent Inhibitor of the Type I TGFbeta Receptor Kinase (TbetaRI),” Bioorganic & Medicinal Chemistry Letters, Vol. 13, No. 24, 2003, pp. 4355-4359. doi:10.1016/j.bmcl.2003.09.028
[37] H. Zhong and K. P. Minneman, “Alpha1-Adrenoceptor Subtypes,” European Journal of Pharmacology, Vol. 375, No. 1-3, 1999, pp. 261-276. doi:10.1016/S0014-2999(99)00222-8
[38] A. Evers and T. Klabunde, “Structure-Based Drug Discovery Using GPCR Homology Modeling: Successful Virtual Screening for Antagonists of the Alpha1a Adrenergic Receptor,” Journal of Medicinal Chemistry, Vol. 48, No. 4, 2005, pp. 1088-1097. doi:10.1021/jm0491804
[39] Y. L. Zhao and D. P. Lu, “In Vitro Effect of Plumbagin in Human Acute Promyelocytic Leukemia Cells,” Journal of Experimental Hematology, Vol. 14, No. 2, 2006, pp. 208210.
[40] J. W. Chen, C. M. Sun, W. L. Sheng, Y. C. Wang and W. J. Syu, “Expression Analysis of Up-Regulated Genes Responding to Plumbagin in Escherichia coli,” Journal of Bacteriology, Vol. 188, No. 2, 2006, pp. 456-463. doi:10.1128/JB.188.2.456-463.2006
[41] L. Ma, F. Wu and R. Y. Chen, “Analysis of Triterpenoids in Ganoderma Lucidum,” Acta Pharmaceutica Sinica, Vol. 38, No. 1, 2003, pp. 50-52.
[42] T. Weller, L. Alig, M. H. Muller, W. C. Kouns and B. Steiner, “Fibrinogen Receptor Antagonists—A Novel Class of Promising Antithrombotics,” Drugs Future, Vol. 19, No. 5, 1994, pp. 461-476.
[43] J. Boustie, J. L. Stigliani, J. Montanha, M. Amoros, M. Payard and L. Girre, “Antipoliovirus Structure-Activity Relationships of Some Aporphine Alkaloids,” Journal of Natural Products, Vol. 61, No. 4, 1998, pp. 480-484. doi:10.1021/np970382v
[44] J. F. Wu and T. P. Liu, “Effects of Berberine on Platelet Aggregation and Plasma Levels of TXB2 and 6-KetoPGFla in Rats with Reveksible Middle Cerebral Arteky Occlusion,” Acta Pharmaceutica Sinica, Vol. 30, No. 2, 1995, pp. 98-102.
[45] A. A Konkar, S. S. Vansal, G. Shams, P. F. Fraundorfer, W. P. Zheng, V. I. Nikulin, J. De Los Angeles, R. H. Fertel, D. D. Miller and D. R. Feller, “β-Adrenoceptor Subtype Activities of Trimetoquinol Derivatives: Biochemical Studies on Human β-Adrenoceptors Expressed in Chinese Hamster Ovary Cells,” Journal of Pharmacology and Experimental Therapeuties, Vol. 291, No. 2, 1999, pp. 875-883.
[46] M. W. Harrold, M. A. Gerhardt, K. Romstedt, D. R. Feller and D. D. Miller, “Synthesis and Platelet Antiaggregatory Activity of Trimetoquinol Analogs as Endoperoxide/Thromboxane A2 Antagonists,” Drug Design and Delivery, Vol. 1, No. 3, 1987, pp. 193-207.
[47] J. Yang, W. Y. Hua, F. X. Wang, Z. Y. Wang and X. Wang, “Design, Synthesis, and Inhibition of Platelet Aggregation for Some 1-o-Chlorophenyl-1,2,3,4-Tetra-Hydroisoquinoline Derivatives,” Bioorganic & Medicinal Chemistry, Vol. 12, No. 24, 2004, pp. 6547-6557. doi:10.1016/j.bmc.2004.09.028
[48] S. T. Gardell, “Ticlopidine and Clopidogrel: Antithrombotic Agents that Block ADP-Mediated Platelet Activation”, Drug Discovery and Design, Vol. 1, No. 3, 1993, pp. 521-526. doi:10.1007/BF02171863
[49] R. J. Gryglewski, R. Korbut, J. Swies, E. Kostka-Trabka, K. Bieron and J. Robak, “Thrombolytic Action of Ticlopidine: Possible Mechanisms,” European Journal of Pharmacology, Vol. 308, No. 1, 1996, pp. 61-67. doi:10.1016/0014-2999(96)00256-7
[50] A. A. Weber, S. Reimann and K. Schror, “Specific Inhibition of ADP-Induced Platelet Aggregation by Clopidogrel in Vitro,” British Journal of Pharmacology, Vol. 126, No. 2, 1999, pp. 415-420. doi:10.1038/sj.bjp.0702276
[51] C. Y. Zhan, J. Yang, X. C. Dong and Y. L. Wang, “Molecular Modeling of Purinergic Receptor P2Y12 and Interaction with Its Antagonists,” Journal of molecular graphics & modelling Volume, Vol. 26, No. 1, 2007, pp. 20-31.
[52] D. A. Handley, “Developmental Preclinical Therapies and Clinical Strategies in the Treatment of Vascular Restenosis,” Drugs Future, Vol. 20, No. 3, 1995, pp. 265-290.
[53] S. A. Mousa, J. M. Bozarth, M. S. Forsythe, S. M. Jackson, A. Leamy, M. M. Diemer, R. P. Kapil, R. M. Knabb, M. C. Mayo and S. K. Pierce, “Antiplatelet and Antithrombotic Efficacy of DMP 728, a Novel Platelet GPIIb/ IIIa Receptor Antagonist,” Circulation, Vol. 89, No. 1, 1994, pp. 3-12. doi:10.1161/01.CIR.89.1.3
[54] A. M. Krezel, J. S. Ulmer, G. Wagner and R. A. Lazarus, “Recombinant Decorsin: Dynamics of the RGD Recognition Site,” Protein Science, Vol. 9, No. 8, 2000, pp. 14281438. doi:10.1110/ps.9.8.1428
[55] J. H. van Maarseveen, J. A. J. den Hartog, K. Tipker, J. H. Reinders, J. Brakkee, U. Schon, W. Kehrbach and C. G. Kruse, “Design and Synthesis of an Orally Active GPIIb/ IIIa Antagonist Based on a Phenylpiperazine Scaffold,” Bioorganic & Medicinal Chemistry, Vol. 8, No. 12, 1998, pp. 1531-1536. doi:10.1016/S0960-894X(98)00257-1
[56] Z. Y. Wang, C. Z. Wang, F. X. Wang and J. Yang, “Synthesis and Platelet Aggregation Inohibitory Activity of 1,2,3,4-Tetrahydroisoquinoline Derivatives,” Chinese Journal of Pharmaceuticals, Vol. 36, No. 5, 2005, pp. 261263.
[57] J. Yang, J. Yao, J. Chen, X. N. Wang, T. Y. Zhu, L. L. Chen and P. Chu, “Construction of Drug Screening Cell Model and Application to New Compounds Inhibiting FITC-Fibrinogen Binding to CHO Cells Expressing Human αIIbβ3,” European Journal of Pharmacology, Vol. 618, No. 1-3, 2009, pp. 1-8. doi:10.1016/j.ejphar.2009.07.011
[58] R. B. Basani, D. L. French, G. Vilaire, D. L. Brown, F. Chen, B. S. Coller, J. M. Derrick, T. K. Gartner, J. S. Bennett and M. Poncz, “A Naturally Occurring Mutation Near the Amino Terminus of Alpha IIb Defines a New Region Involved in Ligand Binding to Alpha IIbbeta 3,” Blood, Vol. 95, No. 1, 2000, pp. 180-188.
[59] J. B. Yang, J. Yao, L. L. Chen and J. Yang, “The AminoTerminal Domain of Integrin β3 Functions as a Transcriptional Activator in Yeast,” Molecular and Cellular Biochemistry, Vol. 288, No. 1-2, 2006, pp. 1-5. doi:10.1007/s11010-005-9078-2
[60] J. Yang, C. Y. Zhan, X. C. Dong, K. Yang and F. X. Wang, “Interaction of Human Fibrinogen Receptor (GPIIbIIIa) with Decorsin,” Acta Pharmacologica Sinica, Vol. 25, No. 8, 2004, pp. 1096-1104.
[61] J. Yang, C. Y. Zhan, X. C. Dong, J. Yao, K. Yang and Z. C. Hua, “Structure and Function of AnnexinV-Decorsin Fusion,” Journal of Molecular Structure: Theochem, Vol. 730, No. 1-3, 2005, pp. 227-233. doi:10.1007/s11010-005-9078-2
[62] P. A. Lapchak and D. M. Araujo, “Therapeutic Potential of Platelet Glycoprotein IIb/IIIa Receptor Antagonists in the Management of Ischemic Stroke,” Journal of Biological Chemistry, Vol. 271, No. 30, 1996, pp. 1778517790.
[63] J. F. Tait and D. Gibson, “Phospholipid Binding of Annexin V: Effects of Calcium and Membrane Phosphotidylserine Content,” Archives of Biochemistry and Biophysics, Vol. 298, No. 1, 1992, pp. 187-191. doi:10.1016/0003-9861(92)90111-9
[64] E. M. Bevers, P. Comfurius and R. F. Zwaal, “Changes in Membrane Phospholipid Distribution during Platelet Activation,” Biochimica et Biophysica Acta (BBA)-Biomembranes, Vol. 736, No .1, 1983, pp. 57-66. doi:10.1016/0005-2736(83)90169-4
[65] J. B. Yang, J. Yao, K. Yang, Z. C. Hua and J. Yang, “Expression, Purification and Activity Assay of New Recombinant Antagonists of Fibrinogen Receptor,” American Journal of Biochemistry and Biotechnology, Vol. 1, No. 2, 2005, pp. 69-73.
[66] J. Yao, K. Yang, J. B. Yang, Z. C. Hua and J. Yang, “Expression, Purification and Activity Assay of Two New Recombinant Antagonists of Fibrinogen Receptor,” Journal of China Pharmaceutical University, Vol. 36, No. 4, 2005, pp. 173-178.
[67] X. J. Xu, “Study on Computer Simulation for Chinese Traditional Compound Medicine,” Progress in Chemistry, Vol. 11, No. 2, 1999, pp. 202-204.
[68] X. R. Wang, D. H. Sun, C. X. Zhuang and X. Chen, “Considerations of Basic Research on Modernization of Chinese Traditional Medicine,” Progress in Chemistry, Vol. 19, No. 2, 1999, pp. 197-199.
[69] J. Morello, S. Rodriguez-Novoa, I. Jimenez-Nacher and V. Soriano, “Drug Interactions of Tipranavir, a New HIV Protease Inhibitor,” Drug Metabolism Letters, Vol. 1, No. 1, 2007, pp. 81-84. doi:10.2174/187231207779814256
[70] L. Zhang, Y. Dong, Y. Sun, T. Chen and Q. Xu, “Role of Four Major Components in the Effect of Si-Ni-San, a Traditional Chinese Prescription, against Contact Sensitivity in Mice,” Journal of Pharmacy and Pharmacology, Vol. 58, No. 9, 2006, pp. 1257-1264. doi:10.1211/jpp.58.9.0013
[71] Y. Sun and Q. Xu, “Effects of Si-Ni-San, a Traditional Chinese Formula, and Its Drug-Pairs on Activities of Metalloproteinases and Adhesion of Mouse Spleen Cells Activated by Concanavalin A,” Chinese Journal of Natural Medicines, Vol. 1, No. 2, 2003, pp. 103-106.
[72] M. X. Li, H. W. Yeung, L. P. Pan and S. I. Chan, “Trichosanthin, a Potent HIV-1 Inhibitor, Can Cleave Supercoiled DNA in Vitro,” Nucleic Acids Research, Vol. 19, No. 22, 1991, pp. 6309-6312. doi:10.1093/nar/19.22.6309
[73] S. Lee-Huang, H. C. Chen, H. F. Kung and P. L. Huang, “MAP30, an Anti-HIV Protein, Inhibits Both Ribosomal RNA Function and DNA Topological Inter-Conversions,” International AIDS Conference, Berlin, 6-11 June 1993, p. 467.
[74] R. G. Sun and J. Zhang, “A Study of Helical Structure of Glycyrrhiza Polysaccharides by Atomic Force Microscope,” Acta Chimica Sinica, Vol. 64, No. 24, 2006, pp. 2467-2472.
[75] J. Yang, X. C. Dong and Y. Leng, “Conformation Biases of Amino Acids Based on Tripeptide Microenvironment from PDB database,” Journal of Theoretical Biology, Vol. 240, No. 3, 2006, pp. 374-384. doi:10.1016/j.jtbi.2005.09.025
[76] J. Yang, X. C. Dong and Y. Leng, “Application of FTTP to Alpha-Helix or Beta-Strand Motifs,” Journal of Theoretical Biology, Vol. 242, No. 1, 2006, pp. 199-219. doi:10.1016/j.jtbi.2006.02.014
[77] J. Yang and C. Q. Liu, “Stability and Molecular Modeling of Triplex DNA Inhibiting DNA Binding Protein Binding to the Core Promoter of Hepatitis B Virus,” Progress in Biochemistry and Biophysics, Vol. 27, No. 3, 2000, pp. 283-286.
[78] C. D. Rizzuto, R. Wyatt, N. Hernandez-Ramos, Y. Sun, P. D. Kwong, W. A. Hendrickson and J. Sodroski, “A Conserved HIV gp120 Glycoprotein Structure Involved in Chemokine Receptor Binding,” Science, Vol. 280, No. 5371, 1998, pp. 1949-1953. doi:10.1126/science.280.5371.1949
[79] J. Yang and C. Q. Liu, “Molecular Modeling on Human CCR5 Receptors and Complex with CD4 Antigens and HIV-1envelope Glycoprotein gp120,” Acta Pharmacologica Sinica, Vol. 20, No. 1, 2000, pp. 29-34.
[80] J. Yang, Y. W. Zhang, J. F. Huang, Y. P. Zhang and C. Q. Liu, “Structure Analysis of CCR5 from Human and Primates,” Journal of Molecular Structure: Theochem, Vol. 505, No. 1-3, 2000, pp. 199-210. doi:10.1016/S0166-1280(99)00393-0
[81] J. Yang and C. Q. Liu, “Interaction between Humaninterleukin-16 and CD4 Receptor of HIV-1,” Acta Pharmacologica Sinica, Vol. 21, No. 6, 2000, pp. 547553.
[82] A. L. Brass, D. M. Dykxhoorn, Y. Benita, N. Yan, A. Engelman, R. J. Xavier, J. Lieberman and S. J. Elledge, “Identification of Host Proteins Required for HIV Infection through a Functional Genomic Screen,” Science, Vol. 319, No. 5865, 2008, pp. 921-926. doi:10.1126/science.1152725

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.