Synchronous Changes of Nitrogen and Carbon Isotopic Ratios and Nannoplankton Assemblage in Marine Sediments off Peru at 250 ka: A Role of Phytoplankton in Primary Ocean Productivity


We report the mechanism controlling changes of δ15Norg and δ13Corg values of marine organic matter, based on the change of calcareous nannoplankton assemblage during the last 500,000 years in core samples from ODP Hole 846B off Peru in the equatorial Pacific Ocean. The δ15Norg values fluctuate in a range from 2.1‰ to 6.7‰, giving an abrupt increase since about 250 ka with the averages of 3.8‰ and 5.0‰ during the older and younger periods, respectively. The δ13Corg values change in a range from ?23.5‰ to ?20.1‰ in an inverse correlation with δ15Norg values, describing an increase of average values at 250 ka as well as those of δ15Norg values. The total organic carbon content also shows averages of 0.6% and 0.3% during the younger and older periods, respectively. The numerical increase of deep dwelling species (Florisphaera profunda) of calcareous nannoplankton during the younger period in comparison with the older period indicates that these chemical and isotopic jumps synchronized with nannoplankton assemblage changes in marine sediments are caused by activity of deep dwellers in photic zone more stratified by an abrupt decline of trade wind strength on this sea area since about 250 ka. A study coupling δ15Norg and δ13Corg values and nannoplankton assemblage can be a useful method for evaluating the extent of stratification of photic zone and the roles of surface and deep dwellers of phytoplankton in producing primary organic matter.

Share and Cite:

H. Hasegawa, I. Kita, S. Tsukamoto, S. Chiyonobu and Y. Kuwahara, "Synchronous Changes of Nitrogen and Carbon Isotopic Ratios and Nannoplankton Assemblage in Marine Sediments off Peru at 250 ka: A Role of Phytoplankton in Primary Ocean Productivity," Open Journal of Geology, Vol. 3 No. 2, 2013, pp. 113-120. doi: 10.4236/ojg.2013.32015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. P. Chavez and R. T. Barber, “An Estimate of New Production in the Equatorial Pacific,” Deep-Sea Research, Vol. 34, No. 7, 1987, pp. 1229-1243. doi:10.1016/0198-0149(87)90073-2
[2] T. Saino and A. Hattori, “15N natural Abundance in Oceanic Suspended Particulate Matter,” Nature, Vol. 283, 1980, pp. 752-754. doi:10.1038/283752a0
[3] A. Altabet, R. Francols, W. Murray and L. Prell, “Climate-Related Variations in Denitrification in the Arabian Sea from Sediment 15N/14N Ratios,” Nature, Vol. 373, 1995, pp. 506-509. doi:10.1038/373506a0
[4] B. U. Haq, “Biogeographic History of Miocene Calcareous Nannoplankton and Paleoceanography of the Atlantic Ocean,” Micropaleontology, Vol. 26, No. 4, 1980, pp. 414-443. doi:10.2307/1485353
[5] T. Sato and K. Kameo, “Pliocene to Quaternary Calcareous Nannofossil Biostratigraphy of the Arctic Ocean, with Reference to Late Pliocene Glaciation,” In: J. Thiede, A. M. Myhre, J. V. Firth, G. L. Johnson and W. F. Ruddiman, Eds., Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 151, 1996, pp. 39-59.
[6] J. Bollmann, “Morphology and Biogeography of Gephyrocapsa coccoliths in Holocene Sediments,” Marine Micropaleontology, Vol. 29, 1997, pp. 319-350. doi:10.1016/S0377-8398(96)00028-X
[7] T. Sato, S. Yuguchi, T. Takayama and K. Kameo, “Drastic Change in the Geographical Distribution of the Cold-Water Nannofossil Coccolithus pelagicus (Wallich) Schiller at 2.74 Ma in the Late Pliocene, with Special Reference to Glaciation in the Arctic Ocean,” Marine Micropaleontology, Vol. 52, 2004, pp. 181-193. doi:10.1016/j.marmicro.2004.05.003
[8] H. Okada and S. Honjo, “The Distribution of Oceanic Coccolithophorids in the Pacific,” Deep-Sea Research, Vol. 20, 1973, pp. 355-374.
[9] B. Molfino and A. McIntyre, “Precessional Forcing of Nutricline Dynamics in the Equatorial Atlantic,” Science, Vol. 249, 1990, pp. 766-769. doi:10.1126/science.249.4970.766
[10] L. Beaufort, “Dynamics of the Monsoon in the Equatorial Indian Ocean over the Last 260,000 years,” Quaternary International, Vol. 31, 1996, pp. 13-18. doi:10.1016/1040-6182(95)00017-D
[11] L. Beaufort, Y. Lancelot, P. Camberlin, O. Cayre, E. Vincent, F. Bassinot and L. Labeyrie, “Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production,” Science, Vol. 278, 1997, pp. 1451-1454. doi:10.1126/science.278.5342.1451
[12] S. Chiyonobu, T. Sato, R. Narikiyo and M. Yamasaki, “Floral Changes in Calcareous Nannofossils and Their Paleoceanographic Significance in the Equatorial Pacific Ocean during the Last 500,000 Years,” Island Arc, Vol. 15, 2006, pp. 476-482. doi:10.1111/j.1440-1738.2006.00543.x
[13] H. Hasegawa, I. Kita and T. Sato, “Correlation between Nitrogen Isotopic Ratios and Productivity of Calcareous Nannoplankton of the Quaternary Sediments off Bahama Bank of the Caribbean Sea,” Goldschmidt Conference, Kurashiki, Kurasiki Sayou University, Goldschmidt, 7-12 September 2003, p. A137.
[14] I. Kita, H. Hasegawa, T. Sato, T. Hayashi and M. Kojima, “Correlation between Nitrogen Isotopic Ratios and Productivity of Calcareous Nannoplankton: Evidence for the Biological Consumption of Nitrate Controlling Nitrogen Isotopic Fluctuation,” Fossils, No. 86, 2009, pp. 59-66.
[15] S. Chiyonobu, “Upwelling Strength and Water Mass Structure Changes in the Equatorial Pacific Ocean during the Last 550 kyr as Recorded by Calcareous Nannofossil Assemblages,” Fossils, No. 86, 2009, pp. 34-44.
[16] Shipboard Scientific Party, “Site 846,” In: L. Mayer, N. Pisias, T. Janecek, et al., Eds., Proceeding of the Ocean Drilling Program, Initial, Reports, Vol. 138, 1992, pp. 265-333. doi:10.2973/
[17] A. C. Mix, J. Le and N. J. Shackelton, “Benthic Foraminiferal Stable Isotope Stratigraphy of Site 846: 0-1.8 Ma. In: N. G. Pisias, L. A. Mayer, T. R. Janecek, A. Palmer-Julson and T. H. van Andel, Eds., Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 138, 1995, pp. 839-854. doi:10.2973/
[18] L. E. Lisiecki and M. E. Raymo, “A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records,” Paleoceanography, Vol. 20, 2005, Article ID: PA1003. doi:10.1029/2004PA001071
[19] K. E. Peters, R. E. Sweeney and I. R. Kaplan, “Correlation of Carbon and Nitrogen Stable Isotope Ratios in Sedimentary Organic Matter,” Limnology and Oceanography, Vol. 23, No. 4, 1978, pp. 598-604. doi:10.4319/lo.1978.23.4.0598
[20] T. Nakatsuka, N. Harada, E. Matsumoto, N. Handa, T. Oba, M. Ikehara, H. Matsuoka and K. Kimoto, “GlacialInterglacial Migration of an Upwelling Field in the Western Equatorial Pacific Recorded by Sediment 15N/14N,” Geophysical Research Letters, Vol. 22, No. 18, 1995, pp. 2525-2528. doi:10.1029/95GL02544
[21] T. Nakatsuka, N. Handa, N. Harada, T. Sugimoto and S. Imaizumi, “Origin and Decomposition of Sinking Particulate Organic Matter in the Deep Water Column Inferred from the Vertical Distributions of Its δ15N, δ13C and δ14C,” Deep-Sea Research Part I, Vol. 44, No. 12, 1997, pp. 1957-1979. doi:10.1016/S0967-0637(97)00051-4
[22] P. M. Kroopnick, “The Distribution of 13C of ΣCO2 in the World Oceans,” Deep-Sea Research, Vol. 32, No. 1, 1985, pp. 57-84. doi:10.1016/0198-0149(85)90017-2
[23] K.-K. Liu and I. R. Kaplan, “The Eastern Tropical Pacific as a Source of 15N-Enriched Nitrate in Seawater off Southern California,” Limnology and Oceanography, Vol. 34, No. 5, 1989, pp. 820-830. doi:10.4319/lo.1989.34.5.0820
[24] M. J. Hayes, “Factors Controlling 13C Contents of Sedimentary Organic Compounds: Principles and Evidence,” Marine Geology, Vol. 113, 1993, pp. 111-125. doi:10.1016/0025-3227(93)90153-M
[25] P. D. Naidu and N. Niitsuma, “Atypical δ13C Signature in Globigerina bulloides at the ODP Site 723A (Arabian Sea): Implications of Environmental Changes Caused by Upwelling,” Marine Micropaleontology, Vol. 53, 2004, pp. 1-10. doi:10.1016/j.marmicro.2004.01.005
[26] T. R. Janecek and D. K. Rea, “Quaternary Fluctuations in the Northern Hemisphere Trade Winds and Westerlies,” Quaternary Research, Vol. 24, 1985, pp. 150-163. doi:10.1016/0033-5894(85)90002-X
[27] J. H. F. Jansen, A. Kuijpers and S. R. Troelstra, “A Mid-Brunhes Climatic Event: Long-Term Changes in Global Atmosphere and Ocean Circulation,” Science, Vol. 232, 1986, pp. 619-622. doi:10.1126/science.232.4750.619
[28] S. A. Hovan, D. K. Rea and N. G. Pisias, “Late Pleistocene Continental Climate and Oceanic Variability Recorded in Northwest Pacific Sediments,” Paleoceanography, Vol. 6, No. 3, 1991, pp. 349-370. doi:10.1029/91PA00559
[29] A. A. Prokopenko, D. F. Williams, M. I. Kuzmin, E. B. Karabanov, G. K. Khursevich and J. A. Peck, “Muted Climate Variations in Continental Siberia during the Mid-Pleistocene Epoch,” Nature, Vol. 418, 2002, pp. 65-68. doi:10.1038/nature00886
[30] Q. Hao and Z. Guo, “Spatial Variations of Magnetic Susceptibility of Chinese Loess for the Last 600 kyr: Implications for Monsoon Evolution,” Journal of Geophysical Research, Vol. 110, 2005, Article ID: B12101. doi:10.1029/2005JB003765
[31] Y. Suganuma, T. Yamazaki and T. Kanamatsu, “South Asian Monsoon Variability during the Past 800 kyr Revealed by Rock Magnetic Proxies,” Quaternary Science Reviews, Vol. 28, 2009, pp. 926-938. doi:10.1016/j.quascirev.2008.12.014
[32] S. Chiyonobu, Y. Mori and M. Oda, “Reconstruction of Paleoceanographic Conditions in the Northwestern Pacific Ocean over the Last 500 kyr based on Calcareous Nannofossil and Planktic Foraminiferal Assemblages,” Marine Micropaleontology, Vol. 96-97, 2012, pp. 29-37. doi:10.1016/j.marmicro.2012.07.002
[33] S. Honjo, “Coccoliths: Production, Transportation and Sedimentation,” Marine Micropaleontology, Vol. 1, 1976, pp. 65-79. doi:10.1016/0377-8398(76)90005-0

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.