A DFT Calculation of Nb and Ta (001) Surface Properties

DOI: 10.4236/jmp.2013.43A060   PDF   HTML   XML   4,065 Downloads   6,517 Views   Citations


First principle calculations are performed using the super cell method with pseudopotentials and plane waves based on the Density Functional Theory (DFT) for the surface structural properties at T = 0 K. Thin slabs of 7 - 13 atomic layers of the clean Nb and Ta (001) surfaces are considered and relaxations, surface energies, and work functions of the fully relaxed slabs are presented. Consistent results are obtained with the Generalized Gradient Approximation (GGA) and the Local Density Approximation (LDA) for the exchange-correlation functional and they compare well with experimental and other theoretical works.

Share and Cite:

A. Ramanathan, "A DFT Calculation of Nb and Ta (001) Surface Properties," Journal of Modern Physics, Vol. 4 No. 3A, 2013, pp. 432-437. doi: 10.4236/jmp.2013.43A060.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Hohenberg and W. Kohn, Physical Review B, Vol. 136, No. 864, 1964.
[2] W. Kohn and L. J. Sham, Physical Review A, Vol. 140, 1965, p. 1133.
[3] R. M. Dreizler and E. K. U. Gross, “Density Functional Theory,” Springer-Verlag, Berlin, 1990. doi:10.1007/978-3-642-86105-5
[4] R. G. Parr and W. Yang, “Density Functional Theory of Atoms and Molecules,” Oxford University, Oxford, 1989.
[5] L. Vitos, A. V. Ruban, H. L. Skriver and J. Kollar, “The Surface Energy of Metals,” Surface Science, Vol. 411, No. 1-2, 1998, pp. 186-202. doi:10.1016/S0039-6028(98)00363-X
[6] H. L. Skriver and N. M. Rosengaard, “Surface Energy and Work Function of Elemental Metals,” Physical Review B, Vol. 46, No. 11, 1992, pp. 7157-7168. doi:10.1103/PhysRevB.46.7157
[7] H. Krakauer, “Self-Consistent Electronic Structure of Tantalum (001): Evidence for the Primary Role of Surface States in Driving Reconstructions on Tungsten (001),” Physical Review B, Vol. 30, No. 12, 1984, pp. 6834-6840. doi:10.1103/PhysRevB.30.6834
[8] X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann and D. C. Allan, “A Brief Introduction to the ABINIT Software Package,” Computational Crystallography, Vol. 220, No. 5-6, 2005, pp. 558-562. doi:10.1524/zkri.220.5.558.65066
[9] C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58 (1998) 3641. doi:10.1103/PhysRevB.58.3641
[10] J. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Physical Review Letters, Vol. 45, No. 23, 1992, pp. 13244-13249. doi:10.1103/PhysRevB.45.13244
[11] H. B. Schlegel, “Optimization of Equilibrium Geometries and Transition Structures,” Journal of Computational Chemistry, Vol. 3, No. 2, 1982, pp. 214-218. doi:10.1002/jcc.540030212
[12] C. Kittel, “Introduction to Solid State Physics,” 7th Edition, Wiley, New York, 1996.
[13] M. Methfessel, D. Hennig and M. Scheffler, “Trends of the Surface Relaxations, Surface Energies, and Work Functions of the 4d Transition Metals,” Physical Review B, Vol. 46, No. 8, 1992, pp. 4816-4829. doi:10.1103/PhysRevB.46.4816
[14] K. I. Shein, I. R. Shein, N. I. Medvedeva, E. V. Shalaeva, M. V. Kuznetsov and A. L. Ivanovskii, “Effects of Atomic Relaxation and the Electronic Structure of Niobium (100) and (110) Surfaces,” The Physics of Metals and Metallography, Vol. 102, No. 6, 2006, pp. 604-610. doi:10.1134/S0031918X06120076
[15] B.-S. Fang, W.-S. Lo, T.-S. Chien, T. C. Leung, C. Y. Lue, C. T. Chan and K. M. Ho, Physical Review B, Vol. 50, 1994, Article ID: 11093.
[16] A. Kiejna, “Surface Atomic Structure and Energetics of Tantalum,” Surface Science, Vol. 598, No. 1-3, 2005, pp. 276-284. doi:10.1016/j.susc.2005.09.029
[17] A. Titov and W. Moritz, “Structure of the Clean Ta (100) Surface” Surface Science, Vol. 123, No. 1, 1982, pp. L709-L716. doi:10.1016/0039-6028(82)90120-0
[18] R. A. Bartynski, D. Heskett, K. Garrison, G. M. Watson, D. M. Zehner, W. N. Mei, S. Y. Tong and X. Pan, Physical Review B, Vol. 40, No. 8, 1989, p. 5340.
[19] V. Fiorentini and M. Methfessel, “Extracting Convergent Surface Energies from Slab Calculations,” Journal of Physics: Condensed Matter, Vol. 8, No. 36, 1996, Article ID: 6525. doi:10.1088/0953-8984/8/36/005
[20] W. R. Tyson and W. A. Miller, “Surface Free Energies of Solid Metals: Estimation from Liquid Surface Tension Measurements,” Surface Science, Vol. 62, No. 1, 1977, pp. 267-276. doi:10.1016/0039-6028(77)90442-3
[21] M. Methfessel, D. Henning and M. Scheffler, “Trends of the Surface Relaxations, Surface Energies, and Work Functions of the 4d Transition Metals,” Physical Review B, Vol. 46, No. 8, 1992, pp. 4816-4829. doi:10.1103/PhysRevB.46.4816
[22] M. Weinert, R. E. Watson, J. W. Davenport and G. W. Fernando, “Adsorbed Layer and Multilayer Materials: The Energetics and Bonding of Pd and Ag on Nb (001) and Nb (110),” Physical Review B, Vol. 39, No. 17, 1989, pp. 12585-12597. doi:10.1103/PhysRevB.39.12585
[23] F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema and A. K. Niessen, “Cohesion in Metals,” Amsterdam, 1988.
[24] O. D. Prototopov, E. V. Mikheeva, D. N. Schreinberg and G. N. Schuppe, Fizika Tverd Tela, Vol. 8, 1966, p. 1140.
[25] S. Halas and T. Durakiewicz, “Work Functions of Elements Expressed in Terms of the Fermi Energy and the Density of Free Electrons,” Journal of Physics: Condensed Matter, Vol. 10, No. 48, 1998, Article ID: 10815. doi:10.1088/0953-8984/10/48/005

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.