Share This Article:

Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina

Abstract Full-Text HTML Download Download as PDF (Size:2052KB) PP. 375-388
DOI: 10.4236/ns.2013.53051    4,181 Downloads   7,069 Views   Citations

ABSTRACT

The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the Forest- DNDC model was applicable for estimating carbon dynamics with hurricane disturbance. The simulated results indicated that Hurricane Hugo in 1989 substantially influenced carbon storage immediately after the disturbance event. The simulated net ecosystem exchange (NEE) for the 58-year period (1950-2007) indicated that the hurricane reduced CO2 sequestration due primarily to the increased decomposition of a large amount of litter and woody debris, including fallen trees (over 80% of pre-hurricane trees), debris and branches, and dead roots. The inter-annual fluctuation of soil CO2 flux showed that the climate variability interfered substantially soil carbon dynamics in the forest. The results showed that there were substantial spatial and temporal differences in CO2 flux (3.2 - 4.8 Mg·C·ha1) and wood biomass due to the differences in physical and biogeochemical characteristics in the forest.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Dai, Z. , Trettin, C. , Li, C. , Sun, G. , Amatya, D. and Li, H. (2013) Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina. Natural Science, 5, 375-388. doi: 10.4236/ns.2013.53051.

References

[1] Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W. and Medina-Elizade, M. (2006) Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103, 14288-14293. doi:10.1073/pnas.0606291103
[2] Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B. and Zhai, P. (2007) Observations: Surface and atmospheric climate change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.
[3] Trettin, C.C. and Jurgensen, M.F. (2003) Carbon cycling in wetland forest soils. In: Kimble, J., Birdsie, R. and Lal, R., Eds., Carbon Sequestration in US Forests, CRC Press LLC, Boca Raton.
[4] Trettin, C.C., Laiho, R., Minkkinen, K. and Laine, J. (2006) Influence of climate change factors on carbon dynamics in northern forested peatlands. Canadian Journal of Soil Science, 86, 269-280. doi:10.4141/S05-089
[5] Miehle, P., Livesley, S.J., Feikema, P.M., Li, C. and Arndt, S.K. (2006) Assessing productivity and carbon sequestration capacity of Eucalyptus globules plantation using the process model Forest-DNDC: Calibration and validation. Ecological Modeling, 192, 83-94. doi:10.1016/j.ecolmodel.2005.07.021
[6] Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, D.A., Piao, S., Rautiainen, A., Sitch, S. and Hayes, D. (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. doi:10.1126/science.1201609
[7] Pietsch, S.A., Hasenauer, H., Kucera, J. and Cermak, J. (2003) Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains. Tree Physiology, 23, 735-746. doi:10.1093/treephys/23.11.735
[8] Riveros-Iregui, D.A. and McGlynn, B.L. (2009) Landscape structure control on soil CO2 efflux variability in complex terrain: Scaling from point observation to watershed scale fluxes. Journal of Geophysical Research: Biogeosciences, 114, G02010. doi:10.1029/2008JG000885
[9] Pacific, V.J., McGlynn, B.L., Riveros-Iregui, D.A., Epstein, H.E. and Welsch, D.L. (2009) Differential soil respiration response to changing hydrologic regimes. Water Resources Research, 45, W07201. doi:10.1029/2009WR007721
[10] Zhang, X., Zwiers, F.W., Hegerl, G.C., Hugo Lambert, F., Gillett, N.P., Solomon, S., Stott, P.A. and Nozawa, T. (2007) Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461-465. doi:10.1038/nature06025
[11] Dai, Z., Amatya, D.M., Sun, G., Trettin, C.C., Li, C. and Li, H. (2011) Climate variability and its impact on forest hydrology on South Carolina Coastal Plain, USA. Atmosphere, 2, 330-357. doi:10.3390/atmos20x000x
[12] Lu, J., Sun, G., McNulty, S.G. and Comerford, N. (2009) Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA. Wetlands, 29, 826-836. doi:10.1672/07-162.1
[13] Mulhouse, J.M., Steven, D.D., Lide, R.F. and Sharitz, R.R. (2005) Effects of dominant species on vegetation change in Carolina bay wetlands following a multi-year drought. The Journal of the Torrey Botanical Society, 132, 411-420. doi:10.3159/1095-5674(2005)132[411:EODSOV]2.0.CO;2
[14] Pielke, R.A., Landsea, C., Mayfield, M., Laver, J. and Pasch, R. (2005) Hurricanes and global warming. Bulletin of the American Meteorological Society, 86, 1571-1575. doi:10.1175/BAMS-86-11-1571
[15] Pezza, A.B. and Simmonds, I. (2005) The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophysical Research Letters, 32, L15712. doi:10.1029/2005GL023390
[16] Trenberth, K. (2005) Uncertainty in hurricanes and global warming. Science, 308, 1753-1754. doi:10.1126/science.1112551
[17] Elsner, J.B. (2006) Evidence in support of the climate change—Atlantic hurricane hypothesis. Geophysical Research Letters, 33, L16705. doi:10.1029/2006GL026869
[18] Landsea, C.W., Harper, B.A., Hoarau, K. and Knaff, J.A. (2006) Can we detect trends in extreme tropical cyclones? Science, 313, 452-454. doi:10.1126/ science.1128448
[19] Hook, D.D., Buford, M.A. and Williams, T.M. (1991) Impact of Hurricane Hugo on the South Carolina coastal plain forest. Journal of Coastal Research, 8, 291-300.
[20] Sheikh, P.A. (2006) The impact of Hurricane Katrina on biological resources. http://assets.opencrs.com/rpts/RL33117_20051018.pdf
[21] Chapman, E.L., Chambers, J.Q., Ribbeck, K.F. and Baker, D.B. (2008) Hurricane Katrina impacts on forest of Louisiana’s Pearl River basin. Forest Ecology and Management, 256, 883-889. doi:10.1016/j.foreco.2008.05.057
[22] Oswalt, S.N. and Oswalt, C.M. (2008) Relationships between common forest metrics and realized impacts of Hurricane Katrina on forest resources in Mississippi. Forest Ecology and Management, 255, 1692-1700. doi:10.1016/j.foreco.2007.11.029
[23] Middleton, B.A. (2009) Effects of Hurricane Katrina on the forest structure of Taxodium Distichum swamps of the Gulf coast, USA. Wetlands, 29, 80-87. doi:10.1672/08-73.1
[24] Wang, Y.P. and Jarvis, P.G. (1990) Description and validation of an array model—MAESTRO. Agricultural and Forest Meteorology, 51, 257-280. doi:10.1016/0168-1923(90)90112-J
[25] Li, C., Aber, J., Stang, F., Butter-Bahl, K. and Papen, H. (2000) A process-oriented model of N2O and NO emissions from forest soils. 1. Model development. Journal of Geophysical Research: Atmospheres, 105, 4369-4384. doi:10.1029/1999JD900949
[26] Thornton, P.E., Law, B.E., Gholz, H.L., Clark, K.L., Falge, E., Ellsworth, D.S., Goldstein, D.S., Monson, R.K., Hollinger, D., Falk, M., Chen, J. and Sparks, J.P. (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology, 113, 185-222. doi:10.1016/S0168-1923(02)00108-9
[27] Battaglia, M., Sands, P., White, D. and Mummery, D. (2004) CABALA: A linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecology and Management, 193, 251-282. doi:10.1016/j.foreco.2004.01.033
[28] Hanson, P.J., Amthor, J.S., Wullschleger, S.D., Wilson, K.B., Grant, R.F., Hartley, A., Hui, D., Hunt, E.R., Johnson Jr., D.W., Kimball, J.S., King, A.W., Lou, Y., McNulty, S.G., Sun, G., Thornton, P.E., Wang, S., Williams, M., Baldocchi, D.D. and Cushman, R.M. (2004) Oak forest carbon and water simulations: Model intercomparisons and evaluations against independent data. Ecological Monographs, 74, 443-489. doi:10.1890/03-4049
[29] Stange, F., Butterbachl, K., Papen, H., Zechmeister-Boltenstern, S., Li, C. and Aber, J. (2000) A process-oriented model of N2O and NO emissions from forest soils. Journal of Geophysical Research: Atmospheres, 105, 4385- 4398. doi:10.1029/1999JD900948
[30] Zhand, Y., Li, C., Trettin, C.C., Li, H. and Sun, G. (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16, 1-17. doi:10.1029/2001GB001838
[31] Li, C., Cui, J., Sun, G. and Trettin, C.C. (2004) Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems. Environmental Management, 33, S176-S186. doi:10.1007/s00267-003-9128-z
[32] Kesik, M., Ambus, P., Baritz, R., Bruggemann, N., Butterbach-Bahl, K., Damm, M., Duyzer, J., Horvath, L., Kiese, R., Kitzler, B., Leip, A., Li, C., Pihlate, M., Pilegaard, K., Seufert, G., Simpson, D., Skiba, U., Smiatek, G., Vesala, T., and Zechmeister-Boltenstern, S. (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences, 2, 353-375. doi:10.5194/bg-2-353-2005
[33] Kesik, M., Bruggemann, N., Forkel, R., Kiese, R., Knoche, R., Li, C., Seufert, G., Simpson, D. and Butterbach-Bahl, K. (2006) Future scenarios of N2O and NO emissions from European forest soils. Journal of Geo- physical Research: Atmospheres, 111, G02018.
[34] Kurbatova, J., Li, C., Varlagin, A., Xiao, X. and Vygodskaya, N. (2008) Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia. Biogeosciences, 5, 969-980. doi:10.5194/bg-5-969-2008
[35] Dai, Z., Trettin, C.C., Li, C., Li, H., Sun, G. and Amatya, D.M. (2012) Effect of assessment scale on spatial and temporal variations in CH4, CO2 and N2O fluxes in a Forested Watershed. Water, Air, and Soil Pollution, 223, 253-265. doi:10.1007/s11270-011-0855-0
[36] Butterbach-Bahl, K., Stange, F. and Papen, H. (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. Journal of Geophysical Research: Atmospheres, 106, 34155-34166. doi:10.1029/2000JD000173
[37] Cui, j., Li, C. and Trettin, C.C. (2005) Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model. Global Change Biology, 11, 278-289. doi:10.1111/j.1365-2486.2005.00900.x
[38] Li, C. (2007) Quantifying greenhouse gas emissions from soils: Scientific basis and modeling approach. Soil Science and Plant Nutrition, 53, 344-352. doi:10.1111/j.1747-0765.2007.00133.x
[39] DHI (2005) DHI water and environment. Danish Hydraulic Institute, Denmark.
[40] Harder, S.V., Amayta, D.M., Callahan, T.J., Trettin, C.C. and Hakkila, J. (2007) Hydrology and Water Budget for a Forested Atlantic Coastal Plain Watershed, South Carolina. Journal of American Water Resources Association, 43, 563-575.
[41] Trettin, C.C., Amatya, D.M., Kaufman, C., Levine, N. and Morgan, R.T. (2008) Recognizing change in hydrologic functions and pathways due to historical agricultural use—Implications to hydrologic assessments and modeling. The 3rd Interagency Conference Research in the Watersheds, Estes Park, 8-11 September 2008, 1-5.
[42] Hook, D.D., Buford, M.A. and Williams, T.M. (1996) Impact of Hurricane Hugo on the South Carolina coastal plain forest. In: Haymond, J.L., Hook, D.D. and Harms W.R., Eds., Hurrican Hugo: South Carolina Forest Land Research and Management Related to the Storm, Southern Research Station, USDA Forest Service, Ashville, 540.
[43] Sun, G., Lu, J., Gartner, D., Miwa, M. and Trettin, C.C. (2000) Water bugets of two forested watersheds in South Carolina. In: Higgins, R.W., Ed., Proceedings of the Spring Special Conference, American Water Resources Association, Miami, 199-202.
[44] Federal Register (1994) Changes in hydric soils of the United States, July 13, 1994. https://www.federalregister.gov/articles/
[45] Federal Register (2002) Hydric soils of the United States, September 18, 2002. http://soildatamart.nrcs.usda.gov/
[46] Long, B.M. (1980) Soil survey of Berkeley County, South Carolina. United States Department of Agriculture, Washington DC.
[47] Fissore, C., Giardian, C.P., Kolka, R.K. and Trettin, C.C. (2009) Soil organic carbon quality in forested mineral wetlands at different mean annual temperature. Soil Biology & Biochemistry, 41, 458-466. doi:10.1016/j.soilbio.2008.11.004
[48] Soil Survey Staff (2011) Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Berkeley County, South Carolina. http://soildatamart.nrcs.usda.gov
[49] Nix, L.E., Hook, D.D., Williams, J.G. and Blaircom, D.V. (1996) Assessment of Hurricane Damage to the Santee Experimental Forest and the Francis Marion National Forest with a Geographic Information System. In: Haymond, J.L., Hook, D.D. and Harms, W.R., Eds., Hurricane Hugo: South Carolina Forest Land Research and Management Related to the Storm, US Department of Agriculture, Asheville.
[50] Wilson, L., Amatya, D., Callahan, T. and Trettin C. (2006) Hurricane impact on stream flow and nutrient exports for a first-order forested watershed of the lower coastal plain, South Carolina. 2nd Interagency Conference on Research in the Watersheds, Otto, 16-18 May 2006, 169-179.
[51] Amatya, D.M. and Trettin, C.C. (2007) Development of watershed hydrologic research at Santee Experimental Forest, Coastal South Carolina. In: Furniss, M.J., Clifton, C.F. and Ronnenberg, K.L., Eds., Advancing the Fundamental Sciences: Proceedings of the Forest Service National Earth Sciences Conference, US Department of Agriculture, Forest Service, Pacific Northwest Research Station, San Diego.
[52] Amatya, D.M., Miwa, M., Harrison, C.A., Trettin, C.C. and Sun, G. (2006) Hydrology and water quality of two order forested watersheds in coastal South Carolina. In: Williams, T., Ed., Proceedings of the 2006 International Conference on Hydrology and Management of Forested Wetlands Conference, St. Joseph, 8-12 April 2006, 15-25.
[53] Sulzman, E.W., Brant, J.B., Bowden, R.D. and Lajtha, K. (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry, 73, 231-256. doi:10.1007/ s10533-004-7314-6
[54] Saucier, J.R. and Clark III, A. (1985) Tables for estimating total tree and product weight and volume of major southern tree species groups. Southwide Energy Committee, American Pulpwood Association Inc., Washington DC.
[55] Smith, J.E., Heath, L.S. and Jenkins, J.C. (2003) Forest volume-to-biomass models and estimates of mass for live and standing dead trees of US forests. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square.
[56] Schroth, G. (1995) Tree root characteristics as criteria for species selection and systems design in agroforestry. Agroforestry Systems, 30, 125-143. doi:10.1007/BF00708917
[57] IPCC (2003) Chapter 3. In: Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. and Wagner, F., Eds., Good Practice Guidance for Land Use, Land-Use Change and Forestry, IPCC, Kanagawa, 3.1-3.150.
[58] Dai, Z., Li, C., Trettin, C.C., Sun, G., Amatya, D.D. and Li, H. (2010). Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain. Hydrology and Earth System Sciences, 14, 1033-1046. doi:10.5194/hess-14-1033-2010
[59] Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models part I: A discussion of principles. Journal of Hydrology, 10, 282-290. doi:10.1016/0022-1694(70)90255-6
[60] Hawley, N.R. (1949) The old rice plantation in and around the Santee Experimental Forest. Agricultural History, 23, 86-91.
[61] Omsby, T., Napoleon, E., Burke, R., Groessl, C. and Feaster, L. (2004) Getting to know ArcGIS desktop: The basics of ArcView, ArcEditor, and ArcInfo Updated for ArcGIS 9. ESRI Press, Redlands, 569.
[62] Dai, Z., Trettin, C.C., Li, C., Amatya, D.M., Sun, G. and Li, H. (2010) Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed. Journal of American Water Resources Association, 46, 1036-1048. doi:10.1111/j.1752-1688.2010
[63] Moriasi, D., Arnold, J., Liew, M.W.V., Bingner, R., Harmmel, R. and Veith, T.L. (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50, 885-899.
[64] Xu, M. and Qi, Y. (2001) Soil-surface CO2 eflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. doi:10.1046/j.1354-1013.2001.00435.x
[65] Miller, R.D. and Johnson, D.D. (2002) The effect of soil moisture tension on carbon dioxide evolution, nitrification, and nitrogen mineralization. Soil Science Society of America, 28, 644-647. doi:10.2136/sssaj1964.03615995002800050020x
[66] Ludovici, K.H., Zarnoch, S.J. and Richter, D.D. (2002) Modeling in-situ pine root decomposition using data from a 60-year chronosequence. Canadian Journal of Forest Research, 32, 1675-1684. doi:10.1139/x02-073

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.