Emerging Frontiers in Therapeutics of Diffuse Large B Cell Lymphoma: Epigenetics and B Cell Receptor Signaling

Abstract

This review discusses the impact of gene expression profiling and sequencing discoveries on new therapeutic strategies in Non-Hodgkin Lymphomas, particularly Diffuse Large B cell Lymphoma. Alterations in oncogenes, over-active signaling pathways down-stream of the B cell receptor, and epigenetic gene mutations will be described. We will also review new targeting strategies aimed at each of these aspects of cell biology encompassing BCL2, BTK, PKCβ, PI3K/mTOR and HDAC inhibition. Specific new drugs in clinical trials and early trial results are included as well.

Share and Cite:

S. Puvvada and L. Rimsza, "Emerging Frontiers in Therapeutics of Diffuse Large B Cell Lymphoma: Epigenetics and B Cell Receptor Signaling," Journal of Cancer Therapy, Vol. 4 No. 3A, 2013, pp. 485-491. doi: 10.4236/jct.2013.43A059.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Siegel, D. Naishadham and A. Jemal, “Cancer Statistics,” A Cancer Journal for Clinicians, Vol. 62, No. 1, 2012, pp. 10-29. doi:10.3322/caac.20138
[2] A. A. Alizadeh, et al., “Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling,” Nature, Vol. 403, No. 6769, 2000, pp. 503-511. doi:10.1038/35000501
[3] A. Rosenwald, et al., “Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma,” The Journal of Experimental Medicine, Vol. 198, No. 6, 2003, pp. 851-862. doi:10.1084/jem.20031074
[4] R. E. Davis, et al., “Constitutive Nuclear Factor kappaB Activity Is Required for Survival of Activated B Cell-Like Diffuse Large B Cell Lymphoma Cells,” The Journal of Experimental Medicine, Vol. 194, No. 12, 2001, pp. 1861-1874. doi:10.1084/jem.194.12.1861
[5] G. Wright, et al., “A Gene Expression-Based Method to Diagnose Clinically Distinct Subgroups of Diffuse Large B Cell Lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 17, 2003, pp. 9991-9996. doi:10.1073/pnas.1732008100
[6] A. Rosenwald, et al., “The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma,” New England Journal of Medicine, Vol. 346, No. 25, 2002, pp. 1937-1947. doi:10.1056/NEJMoa012914
[7] G. Lenz, et al., “Stromal gene signatures in large-B-cell lymphomas,” New England Journal of Medicine, Vol. 359, No. 22, 2008, pp. 2313-2323. doi:10.1056/NEJMoa0802885
[8] K. J. Savage, et al., “MYC Gene Rearrangements Are Associated with a Poor Prognosis in Diffuse Large B-Cell Lymphoma Patients Treated with R-CHOP Chemotherapy,” Blood, Vol. 114, No. 17, 2009, pp. 3533-3537. doi:10.1182/blood-2009-05-220095
[9] J. Iqbal, et al., “BCL2 Translocation Defines a Unique Tumor Subset within the Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma,” American Journal of Pathology, Vol. 165, No. 1, 2004, pp. 159-166. doi:10.1016/S0002-9440(10)63284-1
[10] J. E. Delmore, et al., “BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc,” Cell, Vol. 146, No. 6, 2011, pp. 904-917. doi:10.1016/j.cell.2011.08.017
[11] C. J. O. Nadja Kopp, L. Bird, R. Paranal, J. Qi, T. Bowman, S. J. Rodig, A. L. Kung, J. E. Bradner and D. Weinstock, “BET Bromodomain Inhibition Targets Both c-Myc and IL7R in Acute Lymphoblastic Leukemia,” Blood, Vol. 120, No. 21, 2012, Abstract No: 672.
[12] S. Kendrick and L. H. Hurley, “The Role of G-Quadruplex/i-Motif Secondary Structures as Cis-Acting Regulatory Elements,” Pure and Applied Chemistry, Vol. 82, No. 8, 2010, pp. 1609-1621. doi:10.1351/PAC-CON-09-09-29
[13] NCT00955786, “Dose-Escalation Study of CX-3543 in Patients with Advanced Solid Tumors or Lymphomas,” National Institutes of Health, 2012.
[14] M. S. Davids and J. A. Burger, “Cell Trafficking in Chronic Lymphocytic Leukemia,” Open Journal of Hematolog, Vol. 3, No. S1, 2012.
[15] M. Konopleva, et al., “Mechanisms of Antileukemic Activity of the Novel Bcl-2 Homology Domain-3 Mimetic GX15-070 (Obatoclax),” Cancer Research, Vol. 68, No. 9, 2008, pp. 3413-3420. doi:10.1158/0008-5472.CAN-07-1919
[16] J. R. Brown, “Obatoclax in Combination with Fludarabine and Rituximab (FR) Is Well Tolerated and Shows Promising Clinical Activity in Relapsed CLL/SLL,” Blood, Vol. 118, No. 21, 2012, Abstract No: 2865.
[17] P. K. Paik, et al., “A Phase I Study of Obatoclax Mesylate, a Bcl-2 Antagonist, Plus Topotecan in Solid Tumor Malignancies,” Cancer Chemotherapy and Pharmacology, Vol. 66, No. 6, 2010, pp. 1079-1085. doi:10.1007/s00280-010-1265-5
[18] K. D. Mason, et al., “Programmed Anuclear Cell Death Delimits Platelet Life Span,” Cell, Vol. 128, No. 6, 2007, pp. 1173-1186. doi:10.1016/j.cell.2007.01.037
[19] W. H. Wilson, et al., “Navitoclax, a Targeted High-Affinity Inhibitor of BCL-2, in Lymphoid Malignancies: A Phase 1 Dose-Escalation Study of Safety, Pharmacokinetics, Pharmacodynamics, and Antitumour Activity,” The Lancet Oncology, Vol. 11, No. 12, 2010, pp. 1149-1159. doi:10.1016/S1470-2045(10)70261-8
[20] S. H. Leu, “Sabutoclax, a Novel Pan BCL2 Family Inhibitor, Sensitizes Dormant Blast Crisis Chronic Myeloid Leukemia Stem Cells to Dasatinib,” Blood, 2012.
[21] J. S. Waters, et al., “Phase I Clinical and Pharmacokinetic Study of bcl-2 Antisense Oligonucleotide Therapy in Patients with Non-Hodgkin’s Lymphoma,” Journal of Clinical Oncology, Vol. 18, No. 9, 2000, pp. 1812-1823.
[22] M. S. Davids, and A. Letai, “Targeting the B-Cell Lymphoma/Leukemia 2 Family in Cancer,” Journal of Clinical Oncology, Vol. 30, No. 5, 2012, pp. 3127-3135. doi:10.1200/JCO.2011.37.0981
[23] NCT01328626, “A Phase 1 Study Evaluating the Safety and Pharmacokinetics of ABT-199 in Subjects with Relapsed or Refractory Chronic Lymphocytic Leukemia and Non-Hodgkin Lymphoma,” 2012.
[24] R. E. Davis, et al., “Chronic Active B-Cell-Receptor Signalling in Diffuse Large B-Cell Lymphoma,” Nature, Vol. 463, No. 7277, 2010, pp. 88-92. doi:10.1038/nature08638
[25] M. E. Conley, et al., “Mutations in btk in Patients with Presumed X-Linked Agammaglobulinemia,” American Journal of Human Genetics, Vol. 62, No. 5, 1998, pp. 1034-1043. doi:10.1086/301828
[26] J. Valiaho, C. I. Smith and M. Vihinen, “BTKbase: The Mutation Database for X-Linked Agammaglobulinemia,” Human Mutation, Vol. 27, No. 12, 2006, pp. 1209-1217. doi:10.1002/humu.20410
[27] L. M. Staudt, “Oncogenic Activation of NF-kappaB,” Cold Spring Harbor Perspectives in Biology, Vol. 2, No. 6, 2010, Article ID: a000109. doi:10.1101/cshperspect.a000109
[28] M. Kraus, et al., “Survival of Resting Mature B Lymphocytes Depends on BCR Signaling via the Igalpha/Beta Heterodimer,” Cell, Vol. 117, No. 6, 2004, pp. 787-800. doi:10.1016/j.cell.2004.05.014
[29] W. H. Wilson, “The Bruton’s Tyrosine Kinase (BTK) Inhibitor, Ibrutinib (PCI-32765) Has Preferential Activity in the ABC Subtype of Relapsed/Refractory de Novo Diffuse Large B Cell Lymphoma (DLBCL): Interim Results of a MultiCenter, Open-Label, Phase II Study, in American Society of Hematology,” Blood, 2012.
[30] M. J. Robertson, et al., “Phase II study of Enzastaurin, a Protein Kinase C Beta Inhibitor, in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma,” Journal of Clinical Oncology, Vol. 25, No. 13, 2007, pp. 1741-1746. doi:10.1200/JCO.2006.09.3146
[31] J. D. E. A. Hainsworth, “Randomized Phase II Study of R-CHOP Plus Enzastaurin versus R-CHOP in the First Line Treatment of Patients iwth Intermediate and High Risk Diffuse Large B Cell Lymphoma: Preliminary Analysis,” Journal of Clinical Oncology, Vol. 29, No. 8016, 2011.
[32] NCT00332202, “Prelude: Study to Investigate the Prevention of Relapse in Lymphoma Using Daily Enzastaurin,” National Institutes of Health: Clinical Trials, 2012.
[33] R. M. Young, et al., “Mouse Models of Non-Hodgkin Lymphoma Reveal Syk as an Important Therapeutic Target,” Blood, Vol. 113, No. 11, 2009, pp. 2508-2516. doi:10.1182/blood-2008-05-158618
[34] J. W. Friedberg, et al., “Inhibition of Syk with Fostamatinib Disodium Has Significant Clinical Activity in Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia,” Blood, Vol. 115, No. 13, 2010, pp. 2578-2585. doi:10.1182/blood-2009-08-236471
[35] A. Bernal, et al., “Survival of Leukemic B Cells Promoted by Engagement of the Antigen Receptor,” Blood, Vol. 98, No. 10, 2001, pp. 3050-3057. doi:10.1182/blood.V98.10.3050
[36] R. J. Dowling, et al., “Dissecting the Role of mTOR: Lessons from mTOR Inhibitors,” Biochimica et Biophysica Acta, Vol. 1804, No. 3, 2010, pp. 433-439. doi:10.1016/j.bbapap.2009.12.001
[37] K. Wanner, et al., “Mammalian Target of Rapamycin Inhibition Induces Cell Cycle Arrest in Diffuse Large B Cell Lymphoma (DLBCL) Cells and Sensitises DLBCL Cells to Rituximab,” British Journal of Haematology, Vol. 134, No. 5, 2006, pp. 475-484. doi:10.1111/j.1365-2141.2006.06210.x
[38] T. E. Witzig, et al., “A Phase II Trial of the Oral mTOR Inhibitor Everolimus in Relapsed Aggressive Lymphoma,” Leukemia, Vol. 25, No. 2, 2011, pp. 341-347. doi:10.1038/leu.2010.226
[39] S. T. Jou, et al., “Essential, Nonredundant Role for the Phosphoinositide 3-Kinase p110delta in Signaling by the B-Cell Receptor Complex,” Molecular and Cellular Biology, Vol. 22, No. 24, 2002, pp. 8580-8591. doi:10.1128/MCB.22.24.8580-8591.2002
[40] B. J. Lannutti, et al., “CAL-101, a p110delta Selective Phosphatidylinositol-3-Kinase Inhibitor for the Treatment of B-Cell Malignancies, Inhibits PI3K Signaling and Cellular Viability,” Blood, Vol. 117, No. 2, 2011, pp. 591-594. doi:10.1182/blood-2010-03-275305
[41] L. Wang, T. Kurosaki and S. J. Corey, “Engagement of the B-Cell Antigen Receptor Activates Stat through Lyn in a Jak-Independent Pathway,” Oncogene, Vol. 26, No. 20, 2007, pp. 2851-2859. doi:10.1038/sj.onc.1210092
[42] NCT01431209, “Ruxolitinib Phosphate (Oral JAK Inhibitor INCB18424) in Treating Patients with Relapsed or Refractory Diffuse Large B-Cell or Peripheral T-Cell Non-Hodgkin Lymphoma,” National Institutes of Healt, 2012.
[43] R. D. Morin, et al., “Frequent Mutation of Histone-Modifying Genes in Non-Hodgkin Lymphoma,” Nature, Vol. 476, No. 7360, 2011, pp. 298-303. doi:10.1038/nature10351
[44] H. D. Youn and J. O. Liu, “Cabin1 represses MEF2-Dependent Nur77 Expression and T Cell Apoptosis by Controlling Association of Histone Deacetylases and Acetylases with MEF2,” Immunity, Vol. 13, No. 1, 2000, pp. 85-94. doi:10.1016/S1074-7613(00)00010-8
[45] L. Pasqualucci, et al., “Inactivating Mutations of Acetyltransferase Genes in B-Cell Lymphoma,” Nature, Vol. 471, No. 7337, 2011, pp. 189-195. doi:10.1038/nature09730
[46] L. Pasqualucci, et al., “Analysis of the Coding Genome of Diffuse Large B-Cell Lymphoma,” Nature Genetics, Vol. 43, No. 9, 2011, pp. 830-837. doi:10.1038/ng.892
[47] NCT00967044, “Panobinostat (LBH589) Plus Everolimus (RAD001) in Patients with Relapsed and Refractory Lymphoma,” National Institutes of Health, 2012.
[48] NCT01238692, “A Phase II Study of Oral Panobinostat (LBH589) and Rituximab to Treat Diffuse Large B Cell Lymphoma,” National Institutes of Health, 2012.
[49] M. Crump, et al., “Phase II Trial of Oral Vorinostat (Suberoylanilide Hydroxamic Acid) in Relapsed Diffuse Large-B-Cell Lymphoma,” Annals of Oncology, Vol. 19, No. 5, 2008, pp. 964-969. doi:10.1093/annonc/mdn031
[50] S. Bhalla, et al., “PCI-24781 Induces Caspase and Reactive Oxygen Species-Dependent Apoptosis through NFkappaB Mechanisms and Is Synergistic with Bortezomib in Lymphoma Cells,” Clinical Cancer Research, Vol. 15, No. 10, 2009, pp. 3354-3365. doi:10.1158/1078-0432.CCR-08-2365
[51] A. M. Evens, “A Phase II Multicenter Study of the Histone Deacetylase Inhibitor (HDACi) Abexinostat (PCI-24781) in Relapsed/Refractory Follicular Lymphoma (FL) and Mantle Cell Lymphoma (MCL), in ASH Annual Meeting Abstracts,” Blood, 2012.
[52] D. O. Persky, “A Phase II Study of PXD101 (belinostat) in Relapsed and Refractory Aggressive B-Cell Lymphomas (rel/ref ABCL); SWOG 0520 in ASCO,” Journal of Clinical Oncology, Vol. 30, 2012, Article ID: e18536.
[53] R. Noopur, “Rocilinostat (ACY-1215), a Selective HDAC 6 Inhibitor, Alone and in Combination with Bortezomib in Multiple Myeloma: Preliminary Results from the First-in-Humans Phase I/II Study, in ASH Annual Meeting Abstracts,” Blood, 2012.
[54] L. Santo, et al., “Preclinical Activity, Pharmacodynamic, and Pharmacokinetic Properties of a Selective HDAC6 Inhibitor, ACY-1215, in Combination with Bortezomib in Multiple Myeloma,” Blood, Vol. 119, No. 11, 2012, pp. 2579-2589. doi:10.1182/blood-2011-10-387365
[55] L. C. Cerchietti, et al., “BCL6 Repression of EP300 in Human Diffuse Large B Cell Lymphoma Cells Provides a Basis for Rational Combinatorial Therapy,” Journal of Clinical Investigation, Vol. 120, No. 12, 2010, pp. 4569-4582. doi:10.1172/JCI42869
[56] L. C. Cerchietti, et al., “A Peptomimetic Inhibitor of BCL6 with Potent Antilymphoma Effects in Vitro and in Vivo,” Blood, Vol. 113, No. 15, 2009, pp. 3397-3405. doi:10.1182/blood-2008-07-168773
[57] T. E. A. Dupont, “Combinatorial Targeting of BCL6 and Anti-Apoptotic Proteins in Diffuse Large B-Cell Lymphoma (DLBCL) and Follicular Lymphoma (FL),” Blood, 2012.
[58] M. T. McCabe, et al., “EZH2 Inhibition as a Therapeutic Strategy for Lymphoma with EZH2-Activating Mutations,” Nature, Vol. 492, No. 7427, 2012, pp. 108-112. doi:10.1038/nature11606
[59] M. Gerlinger, et al., “Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing,” New England Journal of Medicine, Vol. 366, No. 10, 2012, pp. 883-892. doi:10.1056/NEJMoa1113205

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.