Rapid In-Vitro and In-Vitro Detection of Chalara fraxinea by Means of Mass Spectrometric Techniques

DOI: 10.4236/ajps.2013.42A057   PDF   HTML   XML   4,076 Downloads   6,848 Views   Citations

Abstract

For the first time, mass spectrometric (MS) techniques were employed to rapidly detect the pathogen Chalara fraxinea in-vitro and directly in-vivo in tissues of diseased ash trees caused by C. fraxinea, using a range of characteristic novel secondary metabolites of C. fraxinea as chemical markers for the presence of the pathogen. We have found an evident correlation between the presence and amount of these-only for C. fraxinea characteristic and novel-secondary metabolites (named chalarafraxinines) and the degree of disease of respective infected ash seedlings. As demonstrated in this work, the MS based high-throughput-screening approach constitute an alternative to the time consuming and expensive micro biological isolation procedures for detection of the pathogen C. fraxinea and furthermore, can be used to rapidly test ash genotypes for resistance / susceptibility to C. fraxinea infection.

Share and Cite:

T. Pham, I. Zaspel, M. Schuemann, H. Stephanowitz and E. Krause, "Rapid In-Vitro and In-Vitro Detection of Chalara fraxinea by Means of Mass Spectrometric Techniques," American Journal of Plant Sciences, Vol. 4 No. 2A, 2013, pp. 444-453. doi: 10.4236/ajps.2013.42A057.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Juodvalkis and A. Vasiliauskas, “The Extent and Possible Causes of Dieback of Ash Stands in Lithuania,” L?UU Mokslo Darbai, Biomedicinos Mokslai, Vol. 56, 2002, pp. 17-22.
[2] K. Przybyl, “Fungi Associated with Necrotic Apical Parts of Fraxinus excelsior Shoots,” Forest Pathology, Vol. 32, No. 6, 2002, pp. 387-394. doi:10.1046/j.1439-0329.2002.00301.x
[3] R. Bakys, R. Vasaitis, P. Barklund, K. Ihrmark and J. Stenlid, “Investigations Concerning the Role of Chalara fraxinea in Declining Fraxinus excelsior,” Plant Pathology, Vol. 58, No. 2, 2009, pp. 284-292. doi:10.1111/j.1365-3059.2008.01977.x
[4] V. Timmermann, I. Borja, A. M. Hietala, T. Kirisits and H. Solheim, “Ash Dieback: Pathogen Spread and Diurnal Patterns of Ascospore Dispersal, with Special Emphasis on Norway,” EPPO Bulletin, Vol. 41, No. 1, 2011, pp. 14-20. doi:10.1111/j.1365-2338.2010.02429.x
[5] J. Schumacher, R. Kehr and S. Leonhard, “Mycological and Histological Investigations of Fraxinus excelsior Nursery Saplings Naturally Infected by Chalara fraxinea,” Forest Pathology, Vol. 40, No. 5, 2010, pp. 419-429.
[6] T. Kowalski, “Chalara fraxinea sp. nov. Associated with Dieback of Ash (Fraxinus excelsior) in Poland,” Forest Pathology, Vol. 36, No. 4, 2006, pp. 264-270. doi:10.1111/j.1439-0329.2006.00453.x
[7] T. Kowalski and O. Holdenrieder, “The Teleomorph of Chalara fraxinea, the Causal Agent of Ash Dieback,” Forest Pathology, Vol. 39, No. 5, 2009, pp. 304-308.
[8] V. Queloz, C. R. Grünig, R. Berndt, T. Kowalski, T. N. Sieber and O. Holdenrieder, “Cryptic Specification in Hymenoscyphus albidus,” Forest Pathology, Vol. 41, No. 2, 2010, pp. 133-142.
[9] R. Vasiliauskas, R. Bakys, V. Lygis, P. Barklund, K. Ihrmark and J. Stenlid, “Fungi Associated with Crown Dieback of Fraxinus excelsior,” In: T. Oszako and S. Woodward, Eds., Possible Limitation of Dieback Phenomena in Broadleaved Stands, Forest Research Institute, Warsaw, 2006, pp. 45-53.
[10] R. Ioos, T. Kowalski, C. Husson and O. Holdenrieder, “Rapid in Planta Detection of Chalara fraxinea by a Real-Time PCR Assay Using a Dual-Labelled Probe,” European Journal of Plant Pathology, Vol. 125, No. 2, 2009, pp. 329-335. doi:10.1007/s10658-009-9471-x
[11] S. Loesgen, J. Magull, B. Schulz, S. Draeger and A. Zeeck, “Isofusidienol: Novel Chromone-3-Oxepines Produced by the Endophytic Fungus Chalara sp.,” European Journal of Organic Chemistry, Vol. 2008, No. 4, 2008, pp. 698-703. doi:10.1002/ejoc.200700839
[12] R. Kanasaki, M. Kobayashi, K. Fujine, I. Sato, M. Hashimoto, S. Takase, Y. Tsurumi, A. Fujie, M. Hino, S. Hahimoto and Y. Hori, “FR227673 and FR190293, Novel Antifungal Lipopeptides from Chalara sp. No. 22210 and Tolypocladium parasiticum No. 16616,” The Journal of Antibiotics, Vol. 59, No. 3, 2006, pp. 158-167. doi:10.1038/ja.2006.23
[13] P. F. Andersson, S. B. K. Johansson, J. Stenlid and A. Broberg, “Isolation, Identification and Necrotic Activity of Viridiol from Chalara fraxinea, the Fungus Responsible for Dieback of Ash,” Forest Pathology, Vol. 40, No. 1, 2010, pp. 43-46.
[14] P. F. Andersson, S. Bengtsson, M. Cleary, J. Stenlid and A. Broberg, “Viridin-Like Steroids from Hymenoscyphus pseudoalbidus,” Phytochemistry, Vol. 86, 2013, pp. 195200.
[15] T. L. H. Pham, H. Weisshoff, C. Muegge, E. Krause, W. Rotard, A. Preiss and I. Zaspel, “Non-Target-Analytik in der ?kologie,” Umweltchemie und ?kotoxikologie, Vol. 16, No. 1, 2010, pp. 2-9.
[16] T. L. H. Pham and I. Zaspel, “Studies on Chalara fraxinea Infection Process of Ash Plants-Direct and Rapid Detection of the Pathogen Chalara fraxinea in Plant Tissue by Means of Mass Spectrometric Techniques,” Proceedings of the Annual Conference 2011 of the VAAM, Karlsruhe, 3-6 April 2011, p. 203.
[17] J. O. Lay, “MALDI-TOF Mass Spectrometry of Bacteria,” Mass Spectrometry Reviews, Vol. 20, No. 4, 2001, pp. 172-194. doi:10.1002/mas.10003
[18] Y. G. Shin and R. B. Van Breemen, “Analysis and Screening of Combinatorial Libraries Using Mass Spectrometry,” Biopharmaceutics & Drug Disposition, Vol. 22, No. 7-8, 2001, pp. 353-372. doi:10.1002/bdd.278
[19] R. Giebel, C. Worden, S. M. Rust, G. T. Kleinheinz, M. Robbins and T. R. Sandrin, “Chapter 6—Microbial Finger Printing Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOFMS): Applications And Challenges,” Advances in Applied Microbiology, Vol. 71, 2010, pp. 149-184. doi:10.1016/S0065-2164(10)71006-6
[20] M. S. Lee and E. H. Kerns, “LC/MS Applications in Drug Development,” Mass Spectrometry Reviews, Vol. 18, No. 3-4, 1999, pp. 187-279. doi:10.1002/(SICI)1098-2787(1999)18:3/4<187::AID-MAS2>3.0.CO;2-K
[21] M. Jemal, “High-Throughput Quantitative Bioanalysis by LC/MS/MS,” Biomedical Chromatography, Vol. 14, No. 6, 2000, pp. 422-429.
[22] A. W. Korfmacher, “Foundation Review: Principles and Applications of LC-MS in New Drug Discovery,” Drug Discovery Today, Vol. 10, No. 20, 2005, pp. 1357-1367. doi:10.1016/S1359-6446(05)03620-2
[23] L. H. Pham, J. Vater, W. Rotard and C. Muegge, “ Identification of Secondary Metabolites from Streptomyces violaceoruber Tü22 by Means of On-Flow LC-NMR and LC-DAD-MS,” In: K. Albert, Ed., Hyphenated NMR Techniques, Magnetic Resonance in Chemistry, Vol. 43, No. 9, 2005, pp. 710-723. doi:10.1002/mrc.1633
[24] K.-W. Cheng, F. Chen, M. Wang, “Liquid Chromato?graphy-Mass Spectrometry In Natural Product Research”, In: S. M. Colegate & R. J. Molyneux, Ed., Bioactive Natural Products: Detection, Isolation, and Structural Determination, Boca Raton, Florida, 2008, pp. 245-261.
[25] K. Yanai, N. Sumida, K. Okakura, T. Moriya, M. Watanabe and T. Murakami, “Para-Position Derivatives of Fungal Antihelmintic Cyclodepsipeptides Engineered with Streptomyces venezuelae Antibiotic Biosynthetic Genes,” Nature Biotechnology, Vol. 22, No. 7, 2004, pp. 848-355. doi:10.1038/nbt978

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.