Resonant Homoclinic Bifurcations with Orbit Flips and Inclination Flips

DOI: 10.4236/am.2013.42042   PDF   HTML   XML   3,392 Downloads   5,508 Views  


Homoclinic bifurcation with one orbit flip, two inclination flips and resonance in the tangent directions of homoclinic orbit is considered. By studying the associated successor functions constructed from a local active coordinate system, we prove the existence of double 1-periodic orbit, 1-homoclinic orbit, and also some coexistence conditions of 1-periodic orbit and 1-homoclinic orbit.

Share and Cite:

T. Zhang, "Resonant Homoclinic Bifurcations with Orbit Flips and Inclination Flips," Applied Mathematics, Vol. 4 No. 2, 2013, pp. 279-284. doi: 10.4236/am.2013.42042.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. J. Homburg and B. Krauskopf, “Resonant Homoclinic Flip Bifurcations,” Journal of Dynamics and Differential Equations, Vol. 12, No. 4, 2000, pp. 807-850. doi:10.1023/A:1009046621861
[2] A. J. Homburg, H. Kokubu and M. Krupa, “The Cusp Horseshoe and Its Bifurcations in the Unfolding of an Inclinication-Flip Homoclinic Orbit,” Ergodic Theory and Dynamical Systems, Vol. 14, No. 4, 1994, pp. 667-693. doi:10.1017/S0143385700008117
[3] B. E. Oldeman, B. Krauskopf and A. R. Champneys, “Numerical Unfoldings of Codimension-Three Resonant Homoclinic Flip Bifurcations,” Nonlinearity, Vol. 14, No. 3, 2001, pp. 597-621. doi:10.1088/0951-7715/14/3/309
[4] C. A. Morales and M. J. Pacifico, “Inclination-Flip Homoclinic Orbits Arising from Orbit-Flip,” Nonlinearity, Vol. 14, No. 2, 2001, pp. 379-393. doi:10.1088/0951-7715/14/2/311
[5] E. Catsigeras and H. Enrich, “Homoclinic Tangencies Near Cascades of Period Doubling Bifurcations,” Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol. 15, No. 3, 1998, pp. 255-299. doi:10.1016/S0294-1449(98)80119-4
[6] H. Kokubu, M. Komuru and H. Oka, “Multiple Homoclinic Bifurcations from Orbit Flip I. Sucessive Homoclinic Doublings,” International Journal of Bifurcation and Chaos, Vol. 6, No. 5, 1996, pp. 833-850. doi:10.1142/S0218127496000461
[7] J. A. Yorke and K. T. Alligood, “Cascades of Period Doubling Bifurcations: A Prerequisite for Horseshoes,” Bulletin of the American Mathematical Society, Vol. 9, 1983, pp. 319-322. doi:10.1090/S0273-0979-1983-15191-1
[8] M. V. Shashkov and D. V. Turaev, “An Existence Theorem of Smooth Nonlocal Center Manifolds for Systems Close to a System with a Homoclinic Loop,” Journal of Nonlinear Science, Vol. 9, No. 5, 1999, pp. 525-573. doi:10.1007/s003329900078
[9] M. Kisaka, H. Kokubu and H. Oka, “Supplement to Homoclinic-Doubling Bifurcation in Vector Fields,” Dynamical Systems, Longman, London, 1993, pp. 92-116.
[10] M. Kisaka, H. Kokubu and H. Oka, “Bifurcations to NHomoclinic Orbits and N-Periodic Orbits in Vector Fields,” Journal of Dynamics and Differential Equations, Vol. 5, No. 2, 1993, pp. 305-357. doi:10.1007/BF01053164
[11] F. Geng and D. Zhu, “Bifurcations of Generic Heteroclinic Loop Accompanied by Transcritical Bifurcation,” International Journal of Bifurcation and Chaos, Vol. 18, No. 4, 2008, pp. 1069-1083. doi:10.1142/S0218127408020847
[12] Q. Lu, Z. Qiao, T. Zhang and D. Zhu, “Heterodimensional Cycle Bifurcation with Orbit-Filp,” International Journal of Bifurcation and Chaos, Vol. 20, No. 2, 2010, pp. 491-508. doi:10.1142/S0218127410025569
[13] X. Liu, “Homoclinic Flip Bifurcations Accompanied by Transcritical Bifurcation,” Chinese Annals of Mathematics, Series B, Vol. 32, No. 6, 2011, pp. 905-916. doi:10.1007/s11401-011-0675-y
[14] T. Zhang and D. Zhu, “Homoclinic Bifurcation of Orbit Flip with Resonant Principal Eigenvalues,” Acta Mathematica Sinica, Vol. 22, No. 3, 2006, pp. 855-864.
[15] T. Zhang and D. Zhu, “Bifurcations of Homoclinic Orbit Connecting Two Nonleading Eigendirections,” International Journal of Bifurcation and Chaos, Vol. 17, No. 3, 2007, pp. 823-836. doi:10.1142/S0218127407017574

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.