Biodiversity and secretion of enzymes with potential utility in wastewater treatment

Abstract Full-Text HTML XML Download Download as PDF (Size:498KB) PP. 34-37
DOI: 10.4236/oje.2013.31005    6,643 Downloads   13,404 Views   Citations

ABSTRACT

The main organic contaminants in municipal wastewater are proteins, polysaccharides, and lipids, which must be hydrolyzed to smaller units. A high concentration of oil and grease in wastewater affects biological wastewater treatment processes by forming a layer on the water surface, which decreased the oxygen transfer rate into the aerobic process. Microbial proteases, lipases, amylases, and celullases should play essential roles in the biological wastewater treatment process. The present study aimed to isolate lipase- and other hydrolytic enzyme-producing microorganisms and assess their degradation capabilities of fat and oil wastewater in the laboratory. We also evaluated microbial interactions as an approach to enhance lipolytic activity. We place emphasis on lipase activity because oil and grease are not only environmental pollutants, but also form an undesirable tough crust on pipes of sewage treatment plants. Thirty-five lipolytic microorganisms from sewage were identified and assessed for hydrolytic enzyme profiles. Lipases were characterized in detail by quantification, chain length affinity, and optimal conditions for activity. The good stability of isolated lipases in the presence of chemical agents, thermal stability, wide range of pH activity and tolerance, and affinity for different lengths of ester chains indicates that some of these enzymes may be good candidates for the hydrolysis of organic compounds present in wastewater. A combination of enzymes and fermenting bacteria may facilitate the complete hydrolysis of triglycerides, proteins, and lingo-cellulose that normally occur in the wastes of industrial processes. This study identifies enzymes and microbial mixtures capable of digesting natural polymeric materials for facilitating the sewage cleaning process.

Cite this paper

Facchin, S. , Alves, P. , Siqueira, F. , Barroca, T. , Victória, J. and Kalapothakis, E. (2013) Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Open Journal of Ecology, 3, 34-37. doi: 10.4236/oje.2013.31005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Becker, P., Koster, D., Popov, M.N., Markossian, S., Antranikian, G. and Markl, H. (1999) The biodegradation of olive oil and treatment of lipid-rich wool wastewater under aerobic thermophilic condition. Water Research, 33, 653-660. doi:10.1016/S0043-1354(98)00253-X
[2] Stoll, U. and Gupta, H. (1997) Management strategies for oil and grease residues. Waste Management & Research, 15, 23-32. doi:10.1006/wmre.1996.0062
[3] Cadoret, A., Conrad, A. and Block, J.C. (2002) Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzyme and Microbial Technology, 31, 179-186. doi:10.1016/S0141-0229(02)00097-2
[4] Sheng, G.P. and Yu, H.Q. (2006) Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 40, 1233-1239. doi:10.1016/j.watres.2006.01.023
[5] Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N. and Daims, H. (2002) Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek, 81, 665-680. doi:10.1023/A:1020586312170
[6] Perle, M., Kimchie, S. and Shelef, G. (1995) Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Research, 29, 1549-1554. doi:10.1016/0043-1354(94)00248-6
[7] Lefebvre, X. Paul, E. and Mauret, M. (1998) Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Research, 32, 3031-3038. doi:10.1016/S0043-1354(98)00053-0
[8] Vidal, G., Carvalho, A., Méndez, R. and Lema, J.M. (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology, 74, 231-239. doi:10.1016/S0960-8524(00)00015-8
[9] Masse, L., Kennedy, K.J. and Chou, S. (2001) Testing of alkaline and enzymatic hydrolysis pretreatments for fat particles in slaughterhouse wastewater. Bioresource Technology, 77, 145-155. doi:10.1016/S0960-8524(00)00146-2
[10] CONAMA 357—Conselho Nacional do Meio Ambiente. (2005) Legislacao Ambiental Federal, resolution 357. www.mma.gov.br
[11] Cheryan, M. and Rajagopalan, N. (1998) Membrane processing of oil streams. Wastewater treatment and waste reduction. Journal of Membrane Science, 151, 13-28. doi:10.1016/S0376-7388(98)00190-2
[12] Bhumibhamon, O., Koprasertsak, A. and Funthong, S. (2002) Biotreatment of high fat and oil wastewater by lipase producing microorganisms. Kasetsart Journal Natural Science, 36, 261-267.
[13] Chigusa, S., Hasegawa, T., Yamamoto, N. and Watanabe Y. (1996) Treatment of wastewater form oil manufacturing plant by yeast. Water Science and Technology, 34, 51-58. doi:10.1016/S0273-1223(96)00820-7
[14] Alberton, D., Mitchell, D.A., Cordova, J., Peralta-Zamora, P. and Krieger, N. (2010) Production and application of R. microsporus lipases. Food Technology and Biotechnology, 48, 28-35.
[15] Environmental Oasis Ltd. (2012) WW07P—Grease removal and food processing. http://www.oasisenviro.co.uk/ww07pproductinfo.html
[16] Wong, H. and Schotz, M.C. (2002) The lipase gene family. Journal of Lipid Research, 43, 993-999. doi:10.1194/jlr.R200007-JLR200
[17] Gilham, D. and Lehner, R. (2005) Techniques to measure lipase and esterase activity in vitro. Methods, 36, 139-147. doi:10.1016/j.ymeth.2004.11.003
[18] Bussamara, R., Fuentefria, A.M., Oliveira, E.S., Broetto, L., Simcikova, M., Valente, P., Schrank, A. and Vainstein, M.H. (2010) Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresource Technology, 101, 268-275. doi:10.1016/j.biortech.2008.10.063
[19] Windish, W.W. and Mhatre, N.S. (1965) Microbial amylases. In: Wu, W., Ed., Advances in Applied Microbiology, Elsevier Inc., Houston, 273-304.
[20] Tanyildizi, M.S., Ozer, D. and Elibol, M. (2005) Optimization of -amylase production by Bacillus sp. using response surface methodology. Process Biochemistry, 40, 2291-2296. doi:10.1016/j.procbio.2004.06.018
[21] Gupta, R., Beg, Q.K. and Lorenz, P. (2002) Bacterial alkaline proteases: Molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15-32. doi:10.1007/s00253-002-0975-y
[22] Ichida, J.M., Krizova, L., LeFevre, C.A., Keener, H.M., Elwell, D.L. and Burtt Jr., E.H. (2001) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. Journal of Microbiological Methods, 47, 199-208. doi:10.1016/S0167-7012(01)00302-5
[23] Rigo, E., Rigoni, R.E., Lodea, P., Oliveira, D., Freire, D.M.G. and Luccio, M. (2008) Application of different lipases as pretreatment in anaerobic treatment of wastewater. Environmental Engineering Science, 25, 1243-1248. doi:10.1089/ees.2007.0197
[24] Hu, W.C., Thayanithy, K. and Forster, C.F. (2002) A kinetic study of the anaerobic digestion of ice-cream wastewater. Process Biochemistry, 37, 965-971. doi:10.1016/S0032-9592(01)00310-7
[25] Mongkolthanaruk, W. and Dharmsthiti, S. (2002) Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. International Biodeterioration & Biodegradation, 50, 101-105. doi:10.1016/S0964-8305(02)00057-4
[26] Cavalcanti, E.A.C., Gutarra, M.L.E., Freire, D.M.G., Castilho, L.R. and Sant’Anna Jr., G.L. (2005) Lipase production by solid-state fermentation in fixed-bed bioreactors. Brazilian Archives of Biology and Technology, 48, 79-84. doi:10.1590/S1516-89132005000400010
[27] Leal, M.C.C.R., Freire, D.M.G., Cammarota, M.C. and Sant’Anna Jr., G.L. (2006) Effect of enzymatic hydrolysis on anaerobic treatment of dairy wastewater. Process Biochemistry, 41, 1173-1178. doi:10.1016/j.procbio.2005.12.014
[28] Kuhad, R.C., Rishi, G. and Singh, A. (2011) Microbial cellulases and their industrial applications. Enzyme Research, 2011, Article ID: 280696. doi:10.4061/2011/280696
[29] Kuhad, R.C., Gupta, R. and Khasa, Y.P. (2010) Bioethanol production from lignocellulosic biomass: An overview. In: Lal B, Ed., Wealth from Waste, Teri Press, New Delhi, 53-106.
[30] Karmakar, M. and Ray, R.R. (2011) Current trends in research and application of microbial cellulases. Research Journal of Microbiology, 6, 41-53. doi:10.3923/jm.2011.41.53
[31] Gupta, R., Mehta, G., Khasa, Y.P. and Kuhad, R.C. (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22, 797-804. doi:10.1007/s10532-010-9404-6
[32] Gupta, R., Khasa, Y.P. and Kuhad, R.C. (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 84, 1103-1109. doi:10.1016/j.carbpol.2010.12.074
[33] Gupta, R., Sharma, K.K. and Kuhad, R.C. (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresource Technology, 100, 1214-1220. doi:10.1016/j.biortech.2008.08.033
[34] Batista, R.M., Rufino, R.D., Luna, J.M., Souza, J.E.G. and Sarubbo, L.A. (2010) Effect of medium components on the production of a biosurfactant from Candida tropicalis, applied to the removal of hydrophobic contaminants in soil. Water Environment Research, 82, 418-425. doi:10.2175/106143009X12487095237279
[35] Luna, J.M., Rufino, R.D., Campos-Takaki, G.M. and Sarubbo, L.A. (2012) Properties of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Chemical Engineering Transactions, 27, 67-72. doi:10.3303/CET1227012
[36] Moussa, T.A.A., Ahmed, A.M. and Abdelhamid, S.M.S. (2006) Optimization of cultural conditions for biosurfactant production from Nocardia amarae. Journal of Applied Sciences Research, 11, 844-850.
[37] Nitschke, M. and Pastore, G.M. (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology, 97, 336-341. doi:10.1016/j.biortech.2005.02.044
[38] Anyanwu, C.U. (2010) Surface activity of extracellular products of a Pseudomonas aeruginosa isolated from petroleum contaminated soil. International Journal of Environmental Sciences, 1, 225-235.
[39] Abouseoud, M., Maachi, R. and Amrane, A. (2007) Bio-surfactant Production from olive oil by Pseudomonas fluorescens. In: Méndez-Vilas, A., Ed., Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Formatex, Badajoz, 340-347.
[40] Van Dyke, M.I., Lee, H. and Trevors, J.T. (1991) Application of microbial surfactants. Biotechnology Advances, 9, 241-252. doi:10.1016/0734-9750(91)90006-H
[41] Ron, E.Z. and Rosenberg, E. (2001) A review of natural roles of biosurfactants. Environmental Microbiology, 3, 229-236. doi:10.1046/j.1462-2920.2001.00190.x
[42] Desai, J.D. and Banat, I.M. (1997) Microbial production of biosurfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47-64.
[43] Bramucci, M., Kane, H., Chen, M. and Nagarajan, V. (2003) Bacterial diversity in an industrial wastewater bioreactor. Applied Microbiology and Biotechnology, 62, 594-600. doi:10.1007/s00253-003-172-x
[44] Akhtar, N., Ghauri, M.A., Iqbal, A., Anwar, M.A. and Akhtar, K. (2008) Biodiversity and phylogenetic analysis of culturable bacteria indigenous to Khewra Salt Mine of Pakistan and their industrial importance. Brazilian Journal of Microbiology, 39, 143-150. doi:10.1590/S1517-83822008000100029
[45] Vuong, C., Gotz, F. and Otto, M. (2000) Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infection and Immunity, 68, 1048- 1053. doi:10.1128/IAI.68.3.1048-1053.2000
[46] Ruegger, M.J.S. and Tauk-Tornisielo, S.M. (2004) Atividade da celulase de fungos isolados do solo da Esta??o Ecológica de Juréia-Itatins, S?o Paulo, Brasil. Brazilian Journal of Botany, 27, 205-211. doi:10.1590/S0100-84042004000200001
[47] Christen, G.L. and Marshall, R.T. (1984) Selected properties of lipase and protease of Pseudomonas fluorescens 27 produced in four media. Journal of Dairy Science, 67, 1680-1687. doi:10.3168/jds.S0022-0302(84)81492-7
[48] Fakhreddine, L., Kademi, A., Ait-Abdelkader, N. and Baratti, J.C. (1998) Microbial growth and lipolytic activities of moderate thermophilic bacterial strains. Biotechnology Letters, 20, 879-883. doi:10.1023/A:1005371727699
[49] Birnboim, H.C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513-1523. doi:10.1093/nar/7.6.1513
[50] Pontes, D.S., Pinheiro, F.A., Lima-Bittencourt, C.I., Guedes, R.L,, Cursino, L., Barbosa, F., Santos, F.R., Chartone-Souza, E. and Nascimento, A.M. (2009) Multiple antimicrobial resistance of gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. Microbial Ecology, 58, 762-772. doi:10.1007/s00248-009-9539-3
[51] Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E. and Akkermans, A.D.L. (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology, 143, 2983-2989. doi:10.1099/00221287-143-9-2983
[52] Lane, D.J. (1991) 16S/23S rDNA sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematics, John Wiley &Sons, New York, 115-148.
[53] Lachance, M.A., Bowles, J.M., Starmer, W.T. and Barker, J.S.F. (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Canadian journal of microbiology, 45, 172-177.
[54] GraphPad Software (2009) Prism 5 for Windows: Version 5.03. www.graphpad.com
[55] Gupta, R., Gupta, N. and Rathi, P. (2004) Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763-781. doi:10.1007/s00253-004-1568-8
[56] Sharma, R., Chisti, Y. and Banerjee, U.C. (2001) Production, purification, characterization and applications of lipases. Biotechnology Advances, 19, 627-662. doi:10.1016/S0734-9750(01)00086-6
[57] Rathi, P., Saxena, R.K. and Gupta, R. (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochemistry, 37, 187-192. doi:10.1016/S0032-9592(01)00200-X
[58] Ghanem, E.H., Al-Sayeed, H.A. and Salch, K.M. (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World Journal of Microbiology and Biotechnology, 16, 459-464. doi:10.1023/A:1008947620734
[59] Rashid, N., Shimada, Y., Ezaki, S., Atomi, H. and Imanaka, T. (2001) Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Applied and Environmental Microbiology, 67, 4064-4069. doi:10.1128/AEM.67.9.4064-4069.2001
[60] Dharmsthiti, S. and Luchai, S. (1999) Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiology Letters, 179, 241-246. doi:10.1111/j.1574-6968.1999.tb08734.x
[61] Lee, O.-W., Koh, Y.-S., Kim, K.-J., Kim, B.-C., Choi, H.- J., Kim, D.-S., Suhartono, M.T. and Pyun, Y.-R. (1999) Isolationa and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 179, 393-400. doi:10.1111/j.1574-6968.1999.tb08754.x
[62] Kanwar, L. and Goswami, P. (2002) Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its applications in the synthesis of isoamyl acetate using membrane-immobilized lipase. Enzyme and Microbial Technology, 31, 727-735. doi:10.1016/S0141-0229(02)00191-6
[63] Sunna, A., Hunter, L., Hutton, C.A. and Bergquist, P.L. (2002) Biochemical characterization of a recombinant thermoalkalophilic lipase and assessment of its substrate enantioselectivity. Enzyme and Microbial Technology, 31, 472-476. doi:10.1016/S0141-0229(02)00133-3
[64] Bradoo, S., Saxena, R.K. and Gupta, R. (1999) Two acidothermotolerant lipases from new variants of Bacillus spp. World Journal of Microbiology and Biotechnology, 15, 87-91. doi:10.1023/A:1008835015132
[65] Hassan F, Shah AA, and Abul-Hameed A. (2006) Influence of culture conditions on lipase production by Bacillus sp. FH5. Annals of Microbiology, 56, 247-252. doi:10.1007/BF03175013
[66] Bora, L. and Kalita, M.C. (2007). Production and optimization of thermostable lipase from a thermophilic Bacillus sp. LBN 4. The Internet Journal of Microbiology 4. http://www.ispub.com/journal/the-internet-journal-of-microbiology/volume-4-number-1/production-and-optimiza- tion-of-thermostable-lipase-from-a-thermophilic-bacillus-sp-lbn-4.html#sthash.qRHstqSc.dpbs
[67] Zhang, J.W. and Zeng, R.Y. (2008) Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Marine Biotechnology, 10, 612-621. doi:10.1007/s10126-008-9099-4
[68] Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S.S. and Gupta, R. (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 41, 38-44. doi:10.1016/j.pep.2004.12.010
[69] Litthauer, D., Ginster, A. and Skein, E.V.E. (2002) Pseudomonas luteola lipase: a new member of the 320-residue Pseudomonas lipase family. Enzyme and Microbial Technology, 30, 209-215. doi:10.1016/S0141-0229(01)00469-0
[70] Xu, X. (2000) Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. European Journal of Lipid Science and Technology, 102, 287- 303. doi:10.1002/(SICI)1438-9312(200004)102:4<287::AID-EJLT287>3.0.CO;2-Q
[71] Dash, S.S., Subramani, R. and Kompala, D.S. (2011). A method for rapid treatment of wastewater and a composition thereof. World Intellectual Property Organization (WIPO), Geneva.
[72] Estera, S.D., Lund, S., Olof, N. and Helsingborg, S. (2006). Method for digestion of sludge in water purification. US Patent No. 20060086659, PCT No. PCT/SE03/ 01436.
[73] Snape, I., Ferguson, S., Harvey, P.M. and Riddle M. (2006) Investigation of evaporation and biodegradation of fuel spills in Antarctica: II extent of natural attenuation at Casey station. Chemosphere, 63, 89-98. doi:10.1016/j.chemosphere.2005.07.040
[74] Banat, I.M., Makkar, R.S. and Cameotra, S.S. (2000) Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495-508. doi:10.1007/s002530051648
[75] Bach, H., Bedichevsky, Y. and Gutnick, D. (2003) An exocellular protein from the oil-degrading microbe Acinetobacter venetianums RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Applied and Environmental Microbiology, 69, 2608-2615. doi:10.1128/AEM.69.5.2608-2615.2003
[76] Mathur, C., Prakash, R., Ali, A., Kaur, J., Cameotra, S.S. and Prakash, N.T. (2010) Emulsification and hydrolysis of oil by Syncephalastrum racemosum. Defence Science Journal, 60, 251-254.
[77] Saimmai, A., Rukadee, O., Onlamool, T., Sobhon, V. and Maneerat, S. (2012) Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World Journal of Microbiology Biotechnology, 28, 2973-2986. doi:10.1007/s11274-012-1108-0
[78] Gautam, K.K. and Tyagi, V.K. (2006) Microbial surfactants: a review. Journal of Oleo Science, 55, 155-166. doi:10.5650/jos.55.155
[79] Saharan, B.S., Rahu, R.K. and Sharma, D. (2011) A review on biosurfactants: Fermentation, current developments and perspectives. Genetic Engineering and Biotechnology Journal, 2011, GEBJ-29.
[80] Pattanathu, K.S.M., Rahman, K.S.M. and Gakpe, E. (2008) Production, characterisation and applications of biosurfactants—Review. Biotechnology, 7, 360-370. doi:10.3923/biotech.2008.360.370
[81] Prieto, C., Jara, C., Mas, A. and Romero, J. (2007) Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. International Journal of Food Microbiology, 115, 348-355.
[82] Sukumaran, R.K., Singhania, R.R. and Pandey, A. (2005) Microbial cellulases—Production, applications and challenges. Journal of Scientific & Industrial Research, 64, 832-844.
[83] Parmar, N., Singh, A. and Ward, O.P. (2001) Enzyme treatment to reduce solids and improve settling of sewage sludge. Journal of Industrial Microbiology and Biotechnology, 26, 383-386. doi:10.1038/sj.jim.7000150

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.