Share This Article:

Characterization of a Tos17 Insertion Mutant of Rice Auxin Signal Transcription Factor Gene, OsARF24

Abstract Full-Text HTML XML Download Download as PDF (Size:669KB) PP. 84-91
DOI: 10.4236/ajps.2013.41013    4,825 Downloads   6,971 Views   Citations

ABSTRACT

Auxin signaling plays a key role in the regulation of various growth and developmental processes in higher plants. Auxin response factors (ARFs) are transcription factors that regulate the expression of auxin-response genes. The osarf24-1 mutant contains a truncation of domain IV in the C-terminal dimerization domain of a rice ARF protein, OsARF24. This mutant showed auxin-deficient phenotypes and reduced sensitivity to auxin. However, OsARF24 protein contains an SPL-rich repression domain in its middle region and acts as a transcriptional repressor. These results imply that the C-terminal dimerization domain, especially the C-terminal half of domain IV, is essential for the proper regulation of OsARF24 function as a transcriptional repressor in rice.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Sakamoto and Y. Inukai, "Characterization of a Tos17 Insertion Mutant of Rice Auxin Signal Transcription Factor Gene, OsARF24," American Journal of Plant Sciences, Vol. 4 No. 1, 2013, pp. 84-91. doi: 10.4236/ajps.2013.41013.

References

[1] W. M. Gray, S. Kepinski, D. Rouse, O. Leyser and M. Estelle, “Auxin Regulates SCFTIR1-Dependent Degradation of AUX/IAA Proteins,” Nature, Vol. 414, No. 6861, 2001, pp. 271-276. doi:10.1038/35104500
[2] N. Zenser, A. Ellsmore, C. Leasure and J. Callis, “Auxin Modulates the Degradation Rate of Aux/IAA Proteins,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 20, 2001, pp. 11795-11800. doi:10.1073/pnas.211312798
[3] T. J. Guilfoyle and G. Hagen, “Auxin Response Factors,” Current Opinion in Plant Biology, Vol. 10, No. 5, 2007, pp. 453-460. doi:10.1016/j.pbi.2007.08.014
[4] T. Ulmasov, G. Hagen and T. J. Guilfoyle, “ARF1, a Transcription Factor That Binds to Auxin Response Elements,” Science, Vol. 276, No. 5320, 1997, pp. 1865-1868. doi:10.1126/science.276.5320.1865
[5] G. Parry and M. Estelle, “Auxin Receptors: A New Role for F-Box Proteins,” Current Opinion in Cell Biology, Vol. 18, No. 2, 2006, pp. 152-156. doi:10.1016/j.ceb.2006.02.001
[6] T. J. Guilfoyle, T. Ulmasov and G. Hagen, “The ARF Family of Transcription Factors and Their Role in Plant Hormone-Responsive Transcription,” Cellular and Molecular Life Sciences, Vol. 54, No. 7, 1998, pp. 619-627. doi:10.1007/s000180050190
[7] T. J. Guilfoyle and G. Hagen, “Auxin Response Factors,” Journal of Plant Growth Regulation, Vol. 20, No. 3, 2001, pp. 281-291. doi:10.1007/s003440010026
[8] T. Ulmasov, Z.-B. Liu, G. Hagen and T. J. Guilfoyle, “Composite Structure of Auxin Re-sponse Elements,” Plant Cell, Vol. 7, No. 10, 1995, pp. 1611-1623.
[9] T. Ulmasov, J. Murfett, G. Hagen and T. J. Guilfoyle, “Aux/IAA Proteins Repress Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response Elements,” Plant Cell, Vol. 9, No. 11, 1997, pp. 1963-1971.
[10] T. Ulmasov, G. Hagen and T. J. Guilfoyle, “Dimerization and DNA Binding of Auxin Response Factors,” Plant Journal, Vol. 19, No. 3, 1999, pp. 309-319. doi:10.1046/j.1365-313X.1999.00538.x
[11] T. Ulmasov, G. Hagen and T. J. Guilfoyle, “Activation and Repression of Transcription by Auxin-Response Factors,” Proceedings of the National Academy of Sciences of the United States of America, Vo. 96, No. 10, 1999, pp. 5844-5849. doi:10.1073/pnas.96.10.5844
[12] S. B. Tiwari, G. Hagen and T. Guilfoyle, “The Roles of Auxin Response Factor Domains in Auxin-Responsive Transcription,” Plant Cell, Vo. 15, No. 2, 2003, pp. 533-543. doi:10.1105/tpc.008417
[13] D. Wang, K. Pei, Y. Fu, Z. Sun, S. Li, H. Liu, K. Tang, B. Han and Y. Tao, “Genome-Wide Analysis of the Auxin Response Factors (ARF) Gene Family in Rice (Oryza sativa),” Gene, Vol. 394, No. 1-2, 2007, pp. 13-24. doi:10.1016/j.gene.2007.01.006
[14] C. Shen, S. Wang, Y. Bai, Y. Wu, S. Zhang, M. Chen, T. J. Guilfoyle, P. Wu and Y. Qi, “Functional Analysis of the structural Domain of ARF Proteins in Rice (Oryza sativa L.),” Journal of Experimental Botany, Vol. 61, No. 14, 2010, pp. 3971-3981. doi:10.1093/jxb/erq208
[15] S. Ohta, S. Mita, T. Hattori and K. Nakamura, “Construction and Expression in Tobacco of a β-Glucuronidase (GUS) Reporter Gene Containing an Intron within the Coding Sequence,” Plant and Cell Physiology, Vol. 31, No. 6, 1990, pp. 805-813.
[16] Y. Hiei, S. Ohta, T. Komari and T. Kumashiro, “Efficient Transformation of Rice (Oryza sativa L.) Mediated by Agrobacterium and Sequence Analysis of Boundaries of the T-DNA,” Plant Journal, Vol. 6, No. 2, 1994, pp. 271- 282. doi:10.1046/j.1365-313X.1994.6020271.x
[17] K. Fujino, Y. Matsuda, K. Ozawa, T. Nishimura, T. Koshiba, M. W. Fraaije and H. Sekiguchi, “Narrow Leaf 7 Controls Leaf Shape Mediated by Auxin in Rice,” Molecular Genetics and Genomics, Vol. 279, No. 5, 2008, pp. 499-507. doi:10.1007/s00438-008-0328-3
[18] J. Qi, Q. Qian, Q. Bu, S. Li, Q. Chen, J. Sun, W. Liang, Y. Zhou, C. Chu, X. Li, F. Ren, K. Palme, B. Zhao, J. Chen, M. Chen and C. Li, “Mutation of the Rice Narrow Leaf 1 Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport,” Plant Physiology, Vol. 147, No. 4, 2008, pp. 1947-1959. doi:10.1104/pp.108.118778
[19] A. Nakamura, I. Umemura, K. Gomi, Y. Hasegawa, H. Kitano, T. Sazuka and M. Matsuoka, “Production and Characterization of Auxin-Insensitive Rice by Overexpression of a Mutagenized Rice IAA Protein,” Plant Journal, Vol. 46, No. 2, 2006, pp. 297-306. doi:10.1111/j.1365-313X.2006.02693.x
[20] M. Jain, N. Kaur, A. K. Tyagi and J. P. Khurana, “The Auxin-Responsive GH3 Gene Family in rice (Oryza sativa),” Functional & Integrative Genomics, Vol. 6, No. 1, 2006, pp. 36-46. doi:10.1007/s10142-005-0142-5
[21] Y. Song, L. Wang and L. Xiong, “Comprehensive Expression Profiling Analysis of OsIAA Gene Family in Developmental Processes and in Response to Phytohormone and Stress Treatments,” Planta, Vol. 229, No. 3, 2009, pp. 577-591. doi:10.1007/s00425-008-0853-7
[22] F. Waller, M. Furuya and P. Nick, “OsARF1, an Auxin Response Factor From Rice, Is Auxin-Regulated and Classifies as a Primary Auxin Responsive Gene,” Plant Molecular Biology, Vol. 50, No. 3, 2002, pp. 415-425. doi:10.1023/A:1019818110761
[23] H. Li, P. Johnson, A. Stepanova, J. M. Alonso and J. R. Ecker, “Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis,” Developmental Cell, Vol. 7, No. 2, 2004, pp. 193-204. doi:10.1016/j.devcel.2004.07.002
[24] G. Hagen and T. Guil-foyle, “Auxin-Responsive Gene Expression: Genes, Promoters and Regulatory Factors,” Plant Molecular Biology, Vol. 49, No. 3-4, 2002, pp. 373-385. doi:10.1023/A:1015207114117
[25] J. Salmon, J. Ramos and J. Callis, “Degradation of the Auxin Response Factor ARF1,” Plant Journal, Vol. 54, No. 1, 2008, pp. 118-128. doi:10.1111/j.1365-313X.2007.03396.x

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.