Characterizing PM2.5 Pollution of a Subtropical Metropolitan Area in China


The chemical and physical characteristics of PM2.5, especially their temporal and geographical variations, have been explored in metropolitan Hangzhou area (China) by a field campaign from September 2010 to July 2011. Annual average concentrations of PM2.5 and PM10 during non-raining days were 106 - 131 μg.m-3 and 127 - 158 μg.m-3, respectively, at three stations in urban breathing zones, while corresponding concentrations of PM2.5 and PM10 at an urban background station (16 mabove ground level in a park) were 78 and 104 μg.m-3, respectively. For comparison, the annual average PM10 concentration at a suburban station (5 mAGL) was 93 μg.m-3. Detailed chemical analyses were also conducted for all samples collected during the campaign. We found that toxic metals (Cd, As, Pb, Zn, Mo, Cu, Hg) were highly enriched in the breathing zones due to anthropogenic activities, while soluble ions (, , ) and total carbon accounted for majority of PM2.5 mass. Unlike most areas in China where sulfate was several times of nitrate in fine PM, nitrate was as important as sulfate and highly correlated with ammonium during the campaign. Thus, a historical shift from sulfate-dominant fine PM to nitrate-dominant fine PM was documented.

Share and Cite:

G. Sun, L. Yao, L. Jiao, Y. Shi, Q. Zhang, M. Tao, G. Shan and Y. He, "Characterizing PM2.5 Pollution of a Subtropical Metropolitan Area in China," Atmospheric and Climate Sciences, Vol. 3 No. 1, 2013, pp. 100-110. doi: 10.4236/acs.2013.31012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Huang, G. Zhuang, Y. Lin, J. S. Fu, Q. Wang, T. Liu, R. Zhang, Y. Jiang, C. Deng, Q. Fu, N. C. Hsu and B. Cao, “Typical Types and Formation Mechanisms of Haze in an Eastern Asia Megacity, Shanghai,” Atmospheric Chemistry and Physics, Vol. 12, No. 1, 2012, pp. 105-124. doi:10.5194/acp-12-105-2012
[2] B. Hou, G. Zhuang, R. Zhang, T. Liu, Z. Guo and Y. Chen, “The Implication of Carbonaceous Aerosol to the Formation of Haze: Revealed from the Characteristics and Sources of OC/EC over a Mega-City in China,” Journal of Hazardous Materials, Vol. 190, No. 1-3, 2011, pp. 529-536. doi:10.1016/j.jhazmat.2011.03.072
[3] X. N. Ye, Z. Ma, J. C. Zhang, H. H. Du, J. M. Chen, H. Chen, X. Yang, W. Gao and F. H. Geng, “Important Role of Ammonia on Haze Formation in Shanghai,” Environmental Research Letters, Vol. 6, No. 2, 2011, p. 024019. doi:10.1088/1748-9326/6/2/024019
[4] A. P. K. Tai, L. J. Mickley and D. J. Jacob, “Correlations between Fine Particulate Matter (PM2.5) and Meteorological Variables in the United States: Implications for the Sensitivity of PM2.5 to Climate Change.” Atmospheric Environment, Vol. 44, No. 32, 2010, pp. 3976-3984. doi:10.1016/j.atmosenv.2010.06.060
[5] J. Lewtas, “Air Pollution Combustion Emissions: Characterization of Causative Agents and Mechanisms Associated with Cancer, Reproductive, and Cardiovascular Effects,” Mutation Research, Vol. 636, No. 1-3, 2007, pp. 95-133. doi:10.1016/j.mrrev.2007.08.003
[6] D. S. Grass, J. M. Ross, F. Family, J. Barbour, H. James Simpson, D. Coulibaly, J. Hernandez, Y. Chen, V. Slavkovich, Y. Li, J. Graziano, R. M. Santella, P. Brandt-Rauf and S. N. Chillrud, “Airborne Particulate Metals in the New York City Subway: A Pilot Study to Assess the Potential for Health Impacts,” Environmental Research, Vol. 110, No. 1, 2010, pp. 1-11. doi:10.1016/j.envres.2009.10.006
[7] A. Zanobetti and J. Schwartz, “The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A National Analysis,” Environmental Health Perspectives, Vol. 117, No. 6, 2009, pp. 898-903. doi:10.1289/ehp.0800108
[8] J. Feng and W. Yang, “Effects of Particulate Air Pollution on Cardiovascular Health: A Population Health Risk Assessment,” Plos One, Vol. 7, No. 3, 2012, p. e33385. doi:10.1371/journal.pone.0033385
[9] Z. Q. Lin, Z. G. Xi, D. F. Yang, F. H. Chao, H. S. Zhang, W. Zhang, H. L. Liu, Z. M. Yang, and R. B. Sun, “Oxidative Damage to Lung Tissue and Peripheral Blood in Endotracheal PM2.5-Treated Rats,” Biomedical and Environmental Sciences, Vol. 22, No. 3, 2009, pp. 223-228. doi:10.1016/S0895-3988(09)60049-0
[10] Y. Wei, I. K. Han, M. Hu, M. Shao, J. J. Zhang and X. Tang, “Personal Exposure to Particulate PAHs and Anthraquinone and Oxidative DNA Damages in Humans,” Chemosphere, Vol. 81, No. 10, 2010, pp. 1280-1285. doi:10.1016/j.chemosphere.2010.08.055
[11] Y. J. Lee, Y. W. Lim, J. Y. Yang, C. S. Kim, Y. C. Shin and D. C. Shin, “Evaluating the PM Damage Cost Due to Urban Air Pollution and Vehicle Emissions in Seoul, Korea,” Journal of Environmental Management, Vol. 92, No. 3, 2011, pp. 603-609. doi:10.1016/j.jenvman.2010.09.028
[12] N. Z. Muller and R. Mendelsohn, “Measuring the Damages of Air Pollution in the United States,” Journal of Environmental Economics and Management, Vol. 54, No. 1, 2007, pp. 1-14. doi:10.1016/j.jeem.2006.12.002
[13] M. Sillanpaa, A. Frey, R. Hillamo, A. S. Pennanen and R. O. Salonen, “Organic, Elemental and Inorganic Carbon in Particulate Matter of Six Urban Environments in Europe,” Atmospheric Chemistry and Physics, Vol. 5, No. 11, 2005, pp. 2869-2879.
[14] Y. F. Lam, J. S. Fu, S. Wu and L. J. Mickley, “Impacts of Future Climate Change and Effects of Biogenic Emissions on Surface Ozone and Particulate Matter Concentrations in the United States,” Atmospheric Chemistry and Physics, Vol. 11, No. 10, 2011, pp. 4789-4806. doi:10.5194/acp-11-4789-2011
[15] X. Y. Zhang, Y. Q. Wang, T. Niu, X. C. Zhang, S. L. Gong, Y. M. Zhang and J. Y. Sun, “Atmospheric Aerosol Compositions in China: Spatial/Temporal Variability, Chemical Signature, Regional Haze Distribution and Comparisons with Global Aerosols,” Atmospheric Chemistry and Physics, Vol. 12, No. 2, 2012, pp. 779-799. doi:10.5194/acp-12-779-2012
[16] D. McCubbin, “Health Benefits of Alternative PM2.5 Standards,” American Lung Association, Clean Air Task Force, Earthjustice, Washington, 2011.
[17] X. Li, L. Wang, Y. Wang, T. Wen, Y. Yang, Y. Zhao and Y. Wang, “Chemical Composition and Size Distribution of Airborne Particulate Matters in Beijing during the 2008 Olympics,” Atmospheric Environment, Vol. 50, 2012, pp. 278-286. doi:10.1016/j.atmosenv.2011.12.021
[18] S.-C. Lai, S.-C. Zou, J.-J. Cao, S.-C. Lee and K.-F. Ho, “Characterizing Ionic Species in PM2.5 and PM10 in Four Pearl River Delta Cities, South China,” Journal of Environmental Sciences, Vol. 19, No. 8, 2007, pp. 939-947. doi:10.1016/S1001-0742(07)60155-7
[19] D. Houthuijs, O. Breugelmans, G. Hoek, E. Vaskovi, E. Mihalikova, J. S. Pastuszka, V. Jirik, S. Sachelarescu, D. Lolova, K. Meliefste, E. Uzunova, C. Marinescu, J. Volf, F. de Leeuw, H. van de Wiel, T. Fletcher, E. Lebret and B. Brunekreef, “PM10 and PM2.5 Concentrations in Central and Eastern Europe: Results from the Cesar Study,” Atmospheric Environment, Vol. 35, No. 15, 2001, pp. 2757-2771.
[20] F. Yang, J. Tan, Q. Zhao, Z. Du, K. He, Y. Ma, F. Duan, G. Chen and Q. Zhao, “Characteristics of PM2.5 Speciation in Representative Megacities and across China,” Atmospheric Chemistry and Physics, Vol. 11, No. 11, 2011, pp. 5207-5219.
[21] J. C. Chow, J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier and R. G. Purcell, “The DRI Thermal Optical Reflectance Carbon Analysis System—Description, Evaluation and Applications in United-States Air-Quality Studies,” Atmospheric Environment Part a-General Topics, Vol. 27, No. 8, 1993, pp. 1185-1201.
[22] J. G. Watson, J. C. Chow, D. H. Lowenthal, L. C. Pritchett, C. A. Frazier, G. R. Neuroth and R. Robbins, “Differences in the Carbon Composition of Source Profiles for Diesel-Powered and Gasoline-Powered Vehicles,” Atmospheric Environment, Vol. 28, No. 15, 1994, pp. 2493-2505. doi:10.1016/1352-2310(94)90400-6
[23] K. F. Ho, S. C. Lee, J. C. Chow and J. G. Watson, “Characterization of PM10 and PM2.5 Source Profiles for Fugitive Dust in Hong Kong,” Atmospheric Environment, Vol. 37, No. 8, 2003, pp. 1023-1032. doi:10.1016/S1352-2310(02)01028-2
[24] J. C. Chow, J. G. Watson, L. W. A. Chen, W. P. Arnott and H. Moosmuller, “Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols,” Environmental Science & Technology, Vol. 38, No. 16, 2004, pp. 4414-4422. doi:10.1021/es034936u
[25] J. C. Chow, J. G. Watson, L. W. A. Chen, G. Paredes-Miranda, M. C. O. Chang, D. Trimble, K. K. Fung, H. Zhang and J. Z. Yu, “Refining Temperature Measures in Thermal/Optical Carbon Analysis,” Atmospheric Chemistry and Physics, Vol. 5, No. 11, 2005, pp. 2961-2972.
[26] H. S. El-Zanan, D. H. Lowenthal, B. Zielinska, J. C. Chow and N. Kumar, “Determination of the Organic Aerosol Mass to Organic Carbon Ratio in IMPROVE Samples,” Chemosphere, Vol. 60, No. 4, 2005, pp. 485-496. doi:10.1016/j.chemosphere.2005.01.005
[27] Y. M. Han, J. J. Cao, J. C. Chow, J. G. Watson, Z. S. An, Z. D. Jin, K. C. Fung and S. X. Liu, “Evaluation of the Thermal/Optical Reflectance Method FOR Discrimination between Char-and Soot-EC,” Chemosphere, Vol. 69, No. 4, 2007, pp. 569-574. doi:10.1016/j.chemosphere.2007.03.024
[28] H. S. El-Zanan, B. Zielinska, L. R. Mazzoleni and D. A. Hansen, “Analytical Determination of the Aerosol Organic Mass-To-Organic Carbon Ratio,” Journal of the Air & Waste Management Association, Vol. 59, No. 1, 2009, pp. 58-69. doi:10.3155/1047-3289.59.1.58
[29] X. D. Feng, Z. Dang and W. L. Huang, “Pollution Level and Chemical Speciation of Heavy Metals in Pm2.5 during Autumn in Guangzhou City,” Huan Jing Ke Xue, Vol. 29, No. 3, 2008, pp. 569-575.
[30] B. J. Turpin and J. J. Huntzicker, “Identification of Secondary Organic Aerosol Episodes and Quantitation of Primary and Secondary Organic Aerosol Concentrations during SCAQS,” Atmospheric Environment, Vol. 29, No. 23, 1995, pp. 3527-3544. doi:10.1016/1352-2310(94)00276-Q
[31] R. Strader, F. Lurmann and S. N. Pandis, “Evaluation of Secondary Organic Aerosol Formation in Winter,” Atmospheric Environment, Vol. 33, No. 29, 1999, pp. 4849-4863. doi:10.1016/S1352-2310(99)00310-6
[32] H. A. Gray, G. R. Cass, J. J. Huntzicker, E. K. Heyerdahl and J. A. Rau, “Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los Angeles,” Environmental Science & Technology, Vol. 20, No. 6, 1986, pp. 580-589. doi:10.1021/es00148a006
[33] J. C. Cabada, S. N. Pandis, R. Subramanian, A. L. Robinson, A. Polidori and B. Turpin, “Estimating the Secondary Organic Aerosol Contribution to PM2.5 Using the EC Tracer Method,” Aerosol Science and Technology, Vol. 38, Supplement 1, 2004, pp. 140-155.
[34] S. C. Yu, “Role of Organic Acids (Formic, Acetic, Pyruvic and Oxalic) in the Formation of Cloud Condensation Nuclei (CCN): A Review,” Atmospheric Research, Vol. 53, No. 4, 2000, pp. 185-217. doi:10.1016/S0169-8095(00)00037-5
[35] S. C. Yu, R. L. Dennis, P. V. Bhave and B. K. Eder, “Primary and Secondary Organic Aerosols over the United States: Estimates on the Basis of Observed Organic Carbon (OC) and Elemental Carbon (EC), and Air Quality Modeled Primary OC/EC ratios,” Atmospheric Environment, Vol. 38, No. 31, 2004, pp. 5257-5268. doi:10.1016/j.atmosenv.2004.02.064
[36] S. C. Yu, R. Mathur, K. Schere, D. W. Kang, J. Pleim, J. Young, D. Tong, G. Pouliot, S. A. McKeen and S. T. Rao, “Evaluation of Real-Time PM2.5 Forecasts and Process Analysis for PM2.5 Formation over the Eastern United States Using the Eta-CMAQ Forecast Model during the 2004 ICARTT Study,” Journal of Geophysical Research-Atmospheres, Vol. 113, No. D6, 2008, Article No. D06204. doi:10.1029/2007JD009226
[37] S. Yu, P. V. Bhave, R. L. Dennis and R. Mathur, “Seasonal and Regional Variations of Primary and Secondary Organic Aerosols over the Continental United States: Semi-Empirical Estimates and Model Evaluation,” Environmental Science & Technology, Vol. 41, No. 13, 2007, pp. 4690-4697. doi:10.1021/es061535g

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.