Share This Article:

Photocatalytic oxidation for degradation of VOCs

Abstract Full-Text HTML XML Download Download as PDF (Size:611KB) PP. 14-25
DOI: 10.4236/ojic.2013.31003    8,874 Downloads   18,088 Views   Citations

ABSTRACT

Volatile organic compounds (VOCs) are the major group of indoor air pollutants, which significantly impact indoor air quality (IAQ) and influence human health. Photocatalytic oxidation (PCO) is a cost-effective technology for VOCs removal, compared with adsorption, biofiltration, or thermal catalysis method. Development of active photocatalyst systems is crucial for the PCO reaction. In this paper, the catalyst systems for photocatalysis under UV and visible light were discussed and the kinetics of photocatalytic oxidation was presented in order that some key influencing factors (relative huminity, light intensity, initial contaminant concentration and mass of catalyst) had also been studied. In addition, the future research directions were also presented in this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Lin, L. , Chai, Y. , Zhao, B. , Wei, W. , He, D. , He, B. and Tang, Q. (2013) Photocatalytic oxidation for degradation of VOCs. Open Journal of Inorganic Chemistry, 3, 14-25. doi: 10.4236/ojic.2013.31003.

References

[1] Jacoby, W.A., Blake, D.M., Noble, R.D., et al. (1995) Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Journal of Catalysis, 157, 87-96. doi:10.1006/jcat.1995.1270
[2] Peral, J. and Ollis, D.F. (1991) Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and mxylene oxidation. Journal of Catalysis, 136, 554-565. doi:10.1016/0021-9517(92)90085-V
[3] Obee, T.N. and Brown, R.T. (1995) TiO2 photocatalysis for indoor air applications: Effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environmental Science and Technology, 29, 1223-1231. doi:10.1021/es00005a013
[4] Alberici, R.M. and Jardim W.F. (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B: Environmental, 14, 55-68.
[5] Tsoukleris, D.S., Maggos, T., Vassilakos, C., et al. (2007) Photocatalytic degradation of volatile organics on TiO2 embedded glass spherules. Catalyst Today, 129, 96-101. doi:10.1016/j.cattod.2007.06.047
[6] Jo, W.K., Park, J.H. and Chun H.D. (2002) Photocatalytic destruction of VOCs for in-vehicle air cleaning. Journal of Photochemistry and Photobiology A: Chemistry, 148, 109-119. doi:10.1016/S1010-6030(02)00080-1
[7] Derwent, R.G., Jenkin, M.E., Saunders, S.M., et al. (2003) Photochemical ozone formation in north west Europe and its control. Atmospheric Environment, 37, 1983-1991. doi:10.1016/S1352-2310(03)00031-1
[8] Yu, H., Zhang, K. and Rossi C. (2007) Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 188, 65-73. doi:10.1016/j.jphotochem.2006.11.021
[9] Ray, M.B. (2000) Photodegradation of the volatile organic compounds in the gas phase: A review. Develpoment and Chemistry Engineering Mineral Process, 8, 405-439. doi:10.1002/apj.5500080502
[10] Kumar, S., Fedorov, A.G. and Gole, J.L. (2005) Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries. Applied Catalysis B: Environmental, 57, 93-107.
[11] Everaert, K. and Baeyens, J. (2004) Catalytic combustion of volatile organic compounds. Journal of Hazardous Materials, 109, 113-139. doi:10.1016/j.jhazmat.2004.03.019
[12] Zhao, J. and Yang, X.D. (2003) Photocatalytic oxidation for indoor air purification: A literature review. Building and Environment, 38, 645-654. doi:10.1016/S0360-1323(02)00212-3
[13] Carp, O., Huisman, C.L. and Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33-177. doi:10.1016/j.progsolidstchem.2004.08.001
[14] Benoit-Marquié, F., Wilkenhoner, U., Simon, V., et al. (2000) VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst. Part I. 1-butanol and 1-butylamine. Journal of Photochemistry and Photobiology A: Chemistry, 132, 225-232. doi:10.1016/S1010-6030(00)00196-9
[15] Biomorgi, J., Oliveros, E., Coppel, Y., et al. (2010) Effect of V-UV-radiation on VOCs-saturated zeolites. Journal of Photochemistry and Photobiology A: Chemistry, 214, 194-202. doi:10.1016/j.jphotochem.2010.06.026
[16] Martra, G., Coluccia, S., Marchese, L., et al. (1999) The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst: A FTIR study. Catalyst Today, 53 695-702. doi:10.1016/S0920-5861(99)00156-X
[17] Muggli, D.S. and Ding, L. (2001) Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Applied Catalysis B: Environmental, 32, 181-194.
[18] Zhang, P.Y., Liang, F.Y., Yu, G., et al. (2003) A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. Journal of Photochemistry and Photobiology A: Chemistry, 156, 189-194. doi:10.1016/S1010-6030(02)00432-X
[19] Ao, C.H. and Lee, S.C. (2004) Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry, 161, 131-140. doi:10.1016/S1010-6030(03)00276-4
[20] Sleiman, M., Conchon, P., Ferronato, C., et al. (2009) Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 86, 159-165.
[21] Blount, M.C. and Falconer, J.L. (2002) Steady-state surface species during toluene photocatalysis. Applied Catalysis B: Environmental, 39, 39-50.
[22] Fresno, F., Hernandez-Alonso, M.D., Tudela, D., et al. (2008) Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2 (M= Sn or Zr) nanocrystalline oxides: Influence of the heteroatom distribution on deactivation. Applied Catalysis B: Environmental, 84, 598-606.
[23] Zou, L., Luo, Y., Hooper, M., et al. (2006) Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chemical Engineering and Processing, 45, 959-964. doi:10.1016/j.cep.2006.01.014
[24] Zuo, G.M., Cheng, Z.X., Chen, H., et al. (2006) Study on photocatalytic degradation of several volatile organic compounds. Journal of Hazardous Materials, 128, 158-163. doi:10.1016/j.jhazmat.2005.07.056
[25] Deveau, P.A., Arsac, F., Thivel, P.X., et al. (2007) Different methods in TiO2 photodegradation mechanism studies: Gaseous and TiO2-adsorbed phases. Journal of Hazardous Materials, 144, 692-697. doi:10.1016/j.jhazmat.2007.01.097
[26] Augugliaro, V., Coluccia, S., Loddo, V., et al. (1999) Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: Mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental, 20, 15-27.
[27] Hussain, M., Ceccarelli, R., Marchisio, et al. (2010) Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chemical Engineering Journal, 157, 45-51. doi:10.1016/j.cej.2009.10.043
[28] Bhatkhande, B.S., Pangarkar, V.G. and Beenackers, A.A.C.M. (2001) Photocatalytic degradation for environmental applications-a review. Journal of Chemical Technology and Biotechnology, 77, 102-116. doi:10.1002/jctb.532
[29] Fu, X., Zeltner, W.A. and Anderson, M.A. (1996) Applications in photocatalytic purification of air. Science, 445-461.
[30] Peral, J., Domenech, S. and Ollis, D.F. (1997) Heterogeneous photocatalysis for purification, decontamination and deodorization of air. Journal of Chemical Technology and Biotechnology, 70, 117-140. doi:10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F
[31] Mills, A. and Le Hunte, S. (1997) An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35. doi:10.1016/S1010-6030(97)00118-4
[32] Demeestere, K., Dewulf, J. and Van Langenhove, H. (2007) Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State-of-the-art. Critical Reviews in Environmental Science and Technology, 37, 489-548. doi:10.1080/10643380600966467
[33] Herrmann, J.M. (2010) Environmental photocatalysis: Perspectives for China. Science China Chemistry, 53, 1831-1843. doi:10.1007/s11426-010-4076-y
[34] Hufschmidt, D., Liu, L., Selzer, V., et al. (2004) Photocatalytic water treatment: Fundamental knowledge for its practical application. Water Science and Technology, 49, 135-140.
[35] Kikuchi, Y., Sunada, K., Iyoda, T., et al. (1997) Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect. Photochemistry and Photobiology A: Chemistry, 106, 51-56.
[36] Agrios, A.G. and Pichat, P. (2005) State of the art and perspectives on materials and applications of photocatalysis over TiO2. Reviews in Applied Electrochemistry, 58, 655-663. doi:10.1007/s10800-005-1627-6
[37] Demeestere, K., Dewulf, J. and Van Langenhove, H. (2007) Heterogeneous photocatalysis as an adavanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art. Critical reviews in Environmental Science and Technology, 37, 489-538. doi:10.1080/10643380600966467
[38] Toma, F.L., Bertrand, G., Klein, D., et al. (2004) Photocatalytic removal of nitrogen oxides via titanium dioxide. Environmental Chemistry Letters, 2, 117-121. doi:10.1007/s10311-004-0087-2
[39] Cao, L.X., Spiess, F.J., Huang, A.M., et al. (1999b) Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films. Journal of Physical Chemistry B, 103, 2912-2917. doi:10.1021/jp983860z
[40] Benoit-Marquie, F., Wilkenhoner, U., Simon, V., et al. (2000) VOC photodegradation at the gas-solid interface of a TiO2 photocatalyst part I: 1-butanol and 1-butylamine. Journal of Photochemistry and Photobiology A: Chemistry, 132, 225-232. doi:10.1016/S1010-6030(00)00196-9
[41] Nimlos, M.R., Wolfrum, E.J., Brewer, M.L., et al. (1996) Gas-phase heterogeneous photocatalytic oxidation of ethanol: Pathways and kinetic modeling. Environmental Science and Technology, 30, 3102-3110. doi:10.1021/es9602298
[42] Ollis, D.F. and Al-Ekabi, H. (1993) Photocatalytic purification and treatment of water and air. Science, 511-532.
[43] Hager, S., Bauer, R. and Kudielka, G. (2000) Photocatalytic oxidation of gaseous chlorinated organics over titanium oxide. Chemosphere, 41, 1219-1225. doi:10.1016/S0045-6535(99)00558-5
[44] Obee, T.N. and Brown, R.T. (1995) TiO2 photocatalysis for indoor air applications-effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environmental Science and Technology, 29, 1223-1231. doi:10.1021/es00005a013
[45] Obee, T.N. (1996) Photooxidation of sub-parts-per-million toluene and formaldehyde levels an titania using a glass-plate reactor. Environmental Science and Technology, 30, 3578-3584. doi:10.1021/es9602713
[46] Cao, L.X., Huang, A.M., Spiess, F.J., et al. (1999a) Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts. Journal of Catalysis, 188, 48-57. doi:10.1006/jcat.1999.2596
[47] Cao, L.X., Gao, Z., Suib, S.L., et al. (2000) Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. Journal of Catalysis, 196, 253-261. doi:10.1006/jcat.2000.3050
[48] Pichat, P., Disdier, J., Hoang-Van, C., et al. (2000) Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catalyst Today, 63, 363-369. doi:10.1016/S0920-5861(00)00480-6
[49] Jo, W.K. and Park, K.H. (2004) Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application. Chemosphere, 57, 555-565. doi:10.1016/j.chemosphere.2004.08.018
[50] Shiraishi, F., Toyoda, K. and Miyakawa, H. (2005) Decomposition of gaseous formaldehyde in a photocatalytic reactor with a parallel array of light sources-Reactor performance. Chemical Engineering Journal, 114, 145-151. doi:10.1016/j.cej.2005.09.008
[51] Bloβ, S.P. and Elfenthal, L. (2007) Doped titanium dioxide as a photocatalyst forUVand visible light. Proceedings International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, 8-9 October 2007, 31-38.
[52] Anpo, M. and Takeuchi, M. (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 216, 505-516. doi:10.1016/S0021-9517(02)00104-5
[53] Yamashita, H., Harada, M., Misaka, J., et al. (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 148, 257-261. doi:10.1016/S1010-6030(02)00051-5
[54] Wu, J.C.S. and Chen, C.H. (2004) A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. Journal of Photochemistry and Photobiology A: Chemistry, 163, 509-515. doi:10.1016/j.jphotochem.2004.02.007
[55] Fuerte, A., Hernandez-Alonso, M.D., Maira, A.J., et al. (2002) Nanosize Ti-W mixed oxides: Effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation. Journal of Catalysis, 212, 1-9. doi:10.1006/jcat.2002.3760
[56] Chapuis, Y., Kivana, D., Guy, C., et al. (2002) Photocatalytic oxidation of volatile organic compounds using fluorescent visible light. Journal of the Air & Waste Management Association, 52, 845-854. doi:10.1080/10473289.2002.10470816
[57] Belver, C., Bellod, R., Fuerte, A., et al. (2006) Nitrogen-containing TiO2 photocatalysts: Part 1. Synthesis and solid characterization. Applied Catalysis B: Environmental, 65, 301-308.
[58] Lettmann, C., Hildenbrand, K., Kisch, H., et al. (2001) Visible light photodegradation of 4-chlorophenol with a coke containing titanium dioxide photocatalyst. Applied Catalysis B: Environmental, 32, 215-227.
[59] Asahi, R., Morikawa, T., Ohwaki, T., et al. (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293, 269-271. doi:10.1126/science.1061051
[60] Ihara, T., Miyoshi, M., Iriyama, Y., et al. (2003) Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B: Environmental, 42, 403-409.
[61] Miyauchi, M., Ikezawa, A., Tobimatsu, H., et al. (2004) Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Physical Chemistry Chemical Physics, 6, 865-870. doi:10.1039/b314692h
[62] Irokawa, Y., Morikawa, T., Aoki, K., et al. (2006) Photodegradation of toluene over TiO2-xNx under visible light irradiation. Physical Chemistry Chemical Physics, 8, 1116-1121. doi:10.1039/b517653k
[63] Wang, X.C., Yu, J.C., Chen, Y.L., et al. (2006) ZrO2-modified mesoporous manocrystalline TiO2-xNx as efficient visible light photocatalysts. Environmental Science and Technology, 40, 2369-2374. doi:10.1021/es052000a
[64] Belver, C., Bellod, R., Stewart, S.J., et al. (2006b) Nitrogencontaining TiO2 photocatalysts: Part 2. Photocatalytic behavior under sunlight excitation. Applied Catalysis B: Environmental, 65, 309-314.
[65] Umebayashi, T., Yamaki, T., Itoh, H., et al. (2002) Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81, 454-456. doi:10.1063/1.1493647
[66] Umebayashi, T., Yamaki, T., Itoh, H., et al. (2003) Visible lightinduced degradation of methylene blue on S-doped TiO2. Chemistry Letters, 32, 330-331. doi:10.1246/cl.2003.330
[67] Ohno, T., Mitsui, T. and Matsumara, M. (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters, 32, 364-365. doi:10.1246/cl.2003.364
[68] Irie, H., Watanabe, Y. and Hashimoto, K. (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 32, 772-773. doi:10.1246/cl.2003.772
[69] Zhang, Y.H., Tang, Z.R., Fu, X.Z., et al. (2011) Nanocomposites of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Applied Catalysis B: Environmental, 106, 445-452. doi:10.1016/j.apcatb.2011.06.002
[70] Yu, H., Zhang, K. and Rossi, C. (2007) Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst. Photochemistry and Photobiology A: Chemistry, 188, 65-73.
[71] Hussain, M., Russo, N. and Saracco, G. (2011) Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chemical Engineering Journal, 166, 138-149. doi:10.1016/j.cej.2010.10.040
[72] Herrmann, J.M. (1999) Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catalyst Today, 53, 115-129. doi:10.1016/S0920-5861(99)00107-8
[73] Obee, T.N. and Hay, S.O. (1997) Effects of moisture and temperature on the photooxidation of ethylene on titania. Environmental Science and Technology, 31, 2034-2038. doi:10.1021/es960827m
[74] Noguchi, T., Fujishima, A., Sawunytama, P., et al. (1998) Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environmental Science and Technology, 32, 3831-3833. doi:10.1021/es980299+
[75] Cao, L. (1999) Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts. Journal of Catalysis, 188, 48-57. doi:10.1006/jcat.1999.2596
[76] Mehos, M.S. and Turchi, C.S. (1993) Field testing solar photocatalytic detoxification on TCE-contaminated groundwater. Environmental Progress, 12, 194-199. doi:10.1002/ep.670120308
[77] Herrmann, J.M., Peruchon, L., Puzenat, E., et al. (2007) Photocatalysis: From fundamentals to self-cleaning glass application. Proceedings International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, 8-9 October 2007, 41-48.
[78] Egerton, T.A. and King, C.J. (1979) The influence of light intensity on photoactivity in titanium dioxide pigmented systems. Journal of the Oil and Colour Chemists Association, 62, 386-391.
[79] Herrmann, J.M. (2006) Water Treatment by Heterogeneous Photocatalysis. Kirk-Othmer Encyclopedia of Chemical Technology, 19, 73-106.
[80] Herrmann, J.M. (2006) From catalysis by metals to bifunctional photo catalysis. Topics in Catalysis, 33, 421-431.
[81] Luo, Y. and Ollis, D.F. (1996) Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: Kinetic promotion and inhibition, time-dependent catalyst activity. Journal of Catalysis, 163, 1-11. doi:10.1006/jcat.1996.0299
[82] Beeldens, A. (2007) Air purification by road materials: Results of the test project in Antwerp. Proceedings International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, 8-9 October 2007, 187-194.
[83] Ao, C.H., Lee, S.C., Mak, C.L., et al. (2003) Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: Promotion versus inhibition effect of NO. Applied Catalysis B: Environmental, 42, 119-129.
[84] Ao, C.H. and Lee, S.C. (2005) Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chemical Engineering Science, 60, 103-109. doi:10.1016/j.ces.2004.01.073
[85] O’Malley, A. and Hodnett, B.K. (1999) The influence of volatile organic compound structure on conditions required for total oxidation. Catalysis Today, 54, 31-38. doi:10.1016/S0920-5861(99)00166-2
[86] Lin, H., Huang, C.P, Li, W., et al. (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Applied Catalysis B: Environmental, 68, 1-11. doi:10.1016/j.apcatb.2006.07.018
[87] Bakardjieva, S., Stengl, V., Szatmary, L., et al. (2006) Transformation of brookite-type TiO2 nanocrystals to rutile: Correlation between microstructure and photoactivity. Materials Chemistry, 16, 1709-1716. doi:10.1039/b514632a
[88] Watson, S.S., Beydoun, D., Scott, J.A., et al. (2003) The effect of preparation method on the photoactivity of crystalline titanium dioxide particles. Chemical Engineering Journal, 95, 213-220. doi:10.1016/S1385-8947(03)00107-4
[89] Bacsa, R.R. and Kiwi, J. (1998) Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B: Environmental, 16, 19-29. doi:10.1016/S0926-3373(97)00058-1
[90] Testino, A., Bellobono, I.R., Buscaglia, V., et al. (2007) Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. Journal of the American Chemical Society, 129, 3564-3575. doi:10.1021/ja067050+
[91] Porkodi, K. and Arokiamary, S.D. (2007) Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst. Materials Characterization, 58, 495-503. doi:10.1016/j.matchar.2006.04.019
[92] Zoua, L., Luo, Y.G., Hooper M., et al. (2006) Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chemical Engineering and Processing, 45, 959-964. doi:10.1016/j.cep.2006.01.014

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.