Tissue induction, the relationship between biomaterial’s microenvironment and mesenchymal stem cell differentiation


Mesenchymal stem cells (MSCs) have been recognized as the best candidate for tissue engineering, while the mechanism of biomaterial-induced MSCs differentiation is not well understood. Most of research has been focused on chemical signaling of biomaterial in the past, but a variety of non-chemical signals were also proved to play essential roles in cellular behaviors. In this paper, we reviewed the current reports about the effects of different kinds of biomaterial signals on MSCs differentiation.

Share and Cite:

Xu, W. , Liao, X. , Zhang, L. and Liu, B. (2013) Tissue induction, the relationship between biomaterial’s microenvironment and mesenchymal stem cell differentiation. Journal of Biomedical Science and Engineering, 6, 85-91. doi: 10.4236/jbise.2013.61011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E. (2006) Matrix elasticity directs stem cell lineage specification. Cell, 126, 677-689. doi:10.1016/j.cell.2006.06.044
[2] Graziano, A., d’Aquino, R., Cusella-De Angelis, M.G., De Francesco, F., Giordano, A., Laino, G., Piattelli, A., Traini, T., De Rosa, A. and Papaccio, G. (2008) Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering. Journal of Cellular Physiology, 214, 166-172. doi:10.1002/jcp.21175
[3] Seo, C.H., Furu-kawa, K., Montagne, K., Jeong, H. and Ushida, T. (2011) The effect of substrate microtopography on focal adhe-sion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials, 32, 9568- 9575. doi:10.1016/j.biomaterials.2011.08.077
[4] Zhang, H., Dai, S., Bi, J. and Liu, K. (2011) Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus, 1, 792-803. doi:10.1098/rsfs.2011.0035
[5] Wagoner, J.A. and Harley, B.A.C. (2011) Mechanobiology of cell-cell and cell-matrix interactions. Springer, Berlin. doi:10.1007/978-1-4419-8083-0
[6] Oh, S., Brammer, K.S., Li, Y.S., Teng, D., Engler, A.J., Chien, S. and Jin, S. (2009) Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the Na- tional Academy of Sciences of the USA, 106, 2130-2135. doi:10.1073/pnas.0813200106
[7] Prockop, D.J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71-74. doi:10.1126/science.276.5309.71
[8] Dennis, J.E., Mer-riam, A., Awadallah, A., Yoo, J.U., Johnstone, B. and Caplan, A.I. (1999) A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. Journal of Bone and Mineral Research, 14, 700-709. doi:10.1359/jbmr.1999.14.5.700
[9] Ferrari, G., Cusel-la-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G. and Mavilio, F. (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528-1530. doi:10.1126/science.279.5356.1528
[10] Liao, X., Lu, S., Zhuo, Y., Winter, C., Xu, W., Li, B. and Wang, Y. (2011) Bone physiology, biomaterial and the effect of mechanical/physical microenvironment on mesenchymal stem cell osteogenesis. Cellular and Molecular Bioengineering, 4, 579-590. doi:10.1007/s12195-011-0204-9
[11] Zandstra, P.W. and Nagy, A. (2001) Stem cell bioengineering. Annual Review of Biomedical Engineering, 3, 275-305. doi:10.1146/annurev.bioeng.3.1.275
[12] Sun, Y., Li, W., Lu, Z., Chen, R., Ling, J., Ran, Q., Jilka, R.L. and Chen, X.D. (2011) Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. FASEB Journal, 25, 1474-1485. doi:10.1096/fj.10-161497
[13] Laurencin, C.T., Ambro-sio, A.M., Borden, M.D. and Cooper Jr., J.A. (1999) Tis-sue engineering: Orthopedic applications. Annual Review of Biomedical Engineering, 1, 19-46. doi:10.1146/annurev.bioeng.1.1.19
[14] Langer, R. (2007) Tissue engineering: Perspectives, challenges, and future directions. Tissue Engineering, 13, 1-2. doi:10.1089/ten.2006.0219
[15] Fujii, E., Ohkubo, M., Tsuru, K., Hayakawa, S., Osaka, A., Kawabata, K., Bon-homme, C. and Babonneau, F. (2006) Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxya-patite. Acta Biomaterialia, 2, 69-74. doi:10.1016/j.actbio.2005.09.002
[16] Huebsch, N. and Mooney, D.J. (2009) Inspiration and application in the evolution of biomaterials. Nature, 462, 426-432. doi:10.1038/nature08601
[17] Scopelliti, P.E., Borgonovo, A., Indrieri, M., Giorgetti, L., Bongiorno, G., Carbone, R., Podesta, A. and Milani, P. (2010) The effect of surface nanometre-scale morphology on protein adsorption. PLoS One, 5, e11862. doi:10.1371/journal.pone.0011862
[18] Eguchi, Y., Wakitani, S., Naka, Y., Nakamura, H. and Takaoka, K. (2011) An injectable composite material containing bone morphogenetic protein-2 shortens the period of distraction osteogenesis in vivo. Journal of Orthopaedic Research, 29, 452-456. doi:10.1002/jor.21225
[19] Hong, Y., Fan, H., Li, B., Guo, B., Liu, M. and Zhang, X. (2010) Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Materials Science and Engineering R, 70, 225-242. doi:10.1016/j.mser.2010.06.010
[20] Lahann, J., Mitra-gotri, S., Tran, T.N., Kaido, H., Sunda- ram, J., Choi, I.S., Hoffer, S., Somorjai, G.A. and Langer, R. (2003) A re-versibly switching surface. Science, 299, 371-374. doi:10.1126/science.1078933
[21] Martino, S., D’Angelo, F., Armentano, I., Kenny, J.M. and Orlacchio, A. (2012) Stem cell-biomaterial interactions for regenerative medicine. Biotechnology Advances, 30, 338-351. doi:10.1016/j.biotechadv.2011.06.015
[22] Keselowsky, B.G., Collard, D.M. and Garcia, A.J. (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Bio-materials, 25, 5947-5954. doi:10.1016/j.biomaterials.2004.01.062
[23] Curran, J.M., Chen, R. and Hunt, J.A. (2006) The guid- ance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials, 27, 4783-4793. doi:10.1016/j.biomaterials.2006.05.001
[24] Kumar, G., Tison, C.K., Chatterjee, K., Pine, P.S., McDaniel, J.H., Salit, M.L., Young, M.F. and Simon Jr., C.G. (2011) The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials, 32, 9188-9196. doi:10.1016/j.biomaterials.2011.08.054
[25] McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. and Chen, C.S. (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. De- velopmental Cell, 6, 483-495.
[26] Kilian, K.A., Bugarija, B., Lahn, B.T. and Mrksich, M. (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the USA, 107, 4872-4877. doi:10.1073/pnas.0903269107
[27] Guvendiren, M. and Burdick, J.A. (2010) The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Bioma-terials, 31, 6511-6518. doi:10.1016/j.biomaterials.2010.05.037
[28] Namgung, S., Baik, K.Y., Park, J. and Hong, S. (2011) Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano, 5, 7383-7390. doi:10.1021/nn2023057
[29] Anselme, K., Ponche, A. and Bigerelle, M. (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proceedings of the Institution of Mechanical Engineers, Part H, 224, 1487-1507.
[30] Kong, H.J., Polte, T.R., Alsberg, E. and Mooney, D.J. (2005) FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by sub- strate stiffness. Proceedings of the National Academy of Sciences of the USA, 102, 4300-4305. doi:10.1073/pnas.0405873102
[31] Chowdhury, F., Na, S., Li, D., Poh, Y.C., Tanaka, T.S., Wang, F. and Wang, N. (2010) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Materials, 9, 82-88. doi:10.1038/nmat2563
[32] Zhang, X., Zou, P., Wu, C., Qu, Y. and Jg, Z. (1991) A study of porous blocks HA ceramics and its osteogeneses. Elsevier, New York, 408-415.
[33] Zhang, L., Li, K.F., Xiao, W.Q., Zheng, L., Xiao, Y.M., Fan, H.S. and Zhang, X.D. (2011) Prepara-tion of colla- gen-chondroitin sulfate-hyaluronic acid hy-brid hydrogel scaffolds and cell compatibility in vitro. Carbohydrate Polymers, 84, 118-125. doi:10.1016/j.carbpol.2010.11.009
[34] Du, J., Chen, X., Liang, X., Zhang, G., Xu, J., He, L., Zhan, Q., Feng, X.Q., Chien, S. and Yang, C. (2011) In- tegrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proceedings of the National Academy of Sciences of the USA, 108, 9466-9471. doi:10.1073/pnas.1106467108
[35] Park, J.S., Chu, J.S., Tsou, A.D., Diop, R., Tang, Z., Wang, A. and Li, S. (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in res- ponse to TGF-beta. Biomaterials, 32, 3921-3930. doi:10.1016/j.biomaterials.2011.02.019
[36] Lai, Y., Sun, Y., Skinner, C.M., Son, E.L., Lu, Z., Tuan, R.S., Jilka, R.L., Ling, J. and Chen, X.D. (2010) Recon- stitution of marrow-derived extracellular matrix ex vivo: A robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells and De-velopment, 19, 1095-1107. doi:10.1089/scd.2009.0217
[37] Wu, S.M., Cybart, S.A., Yu, P., Rossell, M.D., Zhang, J.X., Ramesh, R. and Dynes, R.C. (2010) Reversible electric control of exchange bias in a multiferroic field- effect device. Nature Materials, 9, 756-761. doi:10.1038/nmat2803
[38] Rodin, S., Domogatskaya, A., Strom, S., Hansson, E.M., Chien, K.R., Inzunza, J., Hovatta, O. and Tryggvason, K. (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Bio- technology, 28, 611-615. doi:10.1038/nbt.1620
[39] Villa-Diaz, L.G., Nandivada, H., Ding, J., Nogueira-de- Souza, N.C., Krebsbach, P.H., O’Shea, K.S., Lahann, J. and Smith, G.D. (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotech-nology, 28, 581-583. doi:10.1038/nbt.1631
[40] Kolbe, M., Xiang, Z., Dohle, E., Tonak, M., Kirkpatrick, C.J. and Fuchs, S. (2011) Paracrine effects influenced by cell culture medium and consequences on microvessel- like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells. Tissue Engineering Part A, 17, 2199-2212. doi:10.1089/ten.tea.2010.0474
[41] Liao, X., Lu, S., Zhuo, Y., Winter, C., Xu, W. and Wang, Y. (2012) Visualization of Src and FAK Activity during the Differentiation Process from HMSCs to Osteoblasts. PLoS One, 7, e42709. doi:10.1371/journal.pone.0042709
[42] Liu, B, Kim, T.J. and Wang, Y. (2010) Live cell imaging of mechano-transduction. Journal of the Royal Society Interface, 7, S365-S375. doi:10.1098/rsif.2010.0042.focus
[43] Wang, Y., Shyy, J.Y. and Chien, S. (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: Seeing is believing. Annual Review of Biomedical Engineering, 10, 1-38. doi:10.1146/annurev.bioeng.010308.161731
[44] Choi, C.K., Breckenridge, M.T. and Chen, C.S. (2010) Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioen- gineering. Trends in Cell Biology, 20, 705-714. doi:10.1016/j.tcb.2010.09.007

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.