Streamflow Decomposition Based Integrated ANN Model

Abstract Full-Text HTML Download Download as PDF (Size:338KB) PP. 15-19
DOI: 10.4236/ojmh.2013.31003    3,465 Downloads   6,485 Views   Citations

ABSTRACT

The prediction of riverflows requires the understanding of rainfall-runoff process which is highly nonlinear, dynamic and complex in nature. In this research streamflow decomposition based integrated ANN (SD-ANN) model is developed to improve the efficacy rather than using a single ANN model for the flow hydrograph. The streamflows are decomposed into two states namely 1) the rise state and 2) the fall state. The rainfall-runoff data obtained from the Kolar River basin is used to test the efficacy of the proposed model when compared to feed-forward ANN model (FF-ANN). The results obtained in this study indicate that the proposed SD-ANN model outperforms the single ANN model in terms of both the statistical indices and the prediction of high flows.

Cite this paper

N. Bhatia, L. Sharma, S. Srivastava, N. Katyal and R. Srivastav, "Streamflow Decomposition Based Integrated ANN Model," Open Journal of Modern Hydrology, Vol. 3 No. 1, 2013, pp. 15-19. doi: 10.4236/ojmh.2013.31003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. E. Imrie, S. Durucan and A. Korre, “River Flow Prediction Using Artificial Neural Networks: Generalization beyond the Calibration Range,” Journal of Hydrology, Vol. 233, No. 1-4, 2000, pp. 138-153. doi:10.1016/S0022-1694(00)00228-6
[2] K. P. Sudheer, A. K. Gosain and K. S. Ramasastri, “A Data-Driven Algorithm for Constructing Artificial Neural Network Rainfall-Runoff Models,” Hydrological Processes, Vol. 16, No. 6, 2002, pp. 1325-1330. doi:10.1002/hyp.554
[3] A. Jain and S. Srinivasulu, “Integrated Approach to Model Decomposed Flow Hydrograph Using Artificial Neural Network and Conceptual Techniques,” Journal of Hydrology, Vol. 317, No. 3-4, 2005, pp. 291-306.
[4] J. G. Arnold, P. M. Allen, R. Muttiah and G. Bernhardt, “Automated Base Flow Separation and Recession Analysis Techniques,” Ground Water, Vol. 33, No. 6, 1995, pp. 1010-1018. doi:10.1111/j.1745-6584.1995.tb00046.x
[5] M. E. Spongberg, “Spectral Analysis of Base Flow Separation with Digital Filters,” Water Resources Research, Vol. 36, No. 3, 2000, pp. 745-752. doi:10.1029/1999WR900303
[6] L. C. Smith, D. L. Turcotte and B. L. Isacks, “Streamflow Characterization and Feature Detection Using a Discrete Wavelet Transform,” Hydrological Processes, Vol. 12, No. 2, 1998, pp. 233-249. doi:10.1002/(SICI)1099-1085(199802)12:2<233::AID-HYP573>3.0.CO;2-3
[7] D. Labat, R. Ababou and A. Mangin, “Rainfall-Runoff Relations for Karstic Springs. Part II: Continuous Wavelet and Discrete Orthogonal Multiresolution,” Journal of Hydrology, Vol. 238, No. 3-4, 2000, pp. 149-178. doi:10.1016/S0022-1694(00)00322-X
[8] S. Y. Liu, X. Z. Quan and Y. C. Zhang, “Application of Wavelet Transform in Runoff Sequence Analysis,” Progress in Nature Science, Vol. 13, No. 7, 2003, pp. 546- 549.
[9] F. Anctil and D. G. Tape, “An Exploration of Artificial Neural Network Rainfall-Runoff Forecasting Combined with Wavelet Decomposition,” Journal of Environmental Engineering and Science, Vol. 3, No. 1, 2004, pp. S121-S128. doi:10.1139/s03-071
[10] B. Zhang and S. Govindaraju, “Prediction of Watershed Runoff Using Bayesian Concepts and Modular Neural Networks,” Water Resources Research, Vol. 36, No. 3, 2000, pp. 753-762. doi:10.1029/1999WR900264
[11] D. Furundzic, “Application Example of Neural Networks for Time Series Analysis: Rainfall Runoff Modeling,” Signal Processing, Vol. 64, No. 3, 1998, pp. 383-396. doi:10.1016/S0165-1684(97)00203-X
[12] R. J. Abrahart and L. See, “Comparing Neural Network and Autoregressive Moving Average Techniques for the Provision of Continuous River Flow Forecasts in Two Contrasting Catchments,” Hydrological Processes, Vol. 14, No. 11-12, 2000, pp. 2157-2172. doi:10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S
[13] K. L. Hsu, H. V. Gupta, X. Gao, S. Sorooshian and B. Imam, “Self-Organizing Linear Output Map (SOLO): An Artificial Neural Network Suitable for Hydrologic Modeling and Analysis,” Water Resources Research, Vol. 38, No. 12, 2002, pp. 1-17. doi:10.1029/2001WR000795
[14] K. Hsu, V. H. Gupta and S. Sorooshian, “Artificial Neural Network Modeling of the Rainfall-Runoff Process,” Water Resources Research, Vol. 31, No. 10, 1995, pp. 2517-2530. doi:10.1029/95WR01955
[15] N. Sajikumar and B. S. Thandaveswara, “A Nonlinear Rainfall-Runoff Model Using an Artificial Neural Network,” Journal of Hydrology, Vol. 216, No. 1-2, 1999, pp. 32-55.
[16] K. P. Sudheer, P. C. Nayak and K. S. Ramasastri, “Improving Peak Flow Estimates in Artificial Neural Network River Flow Models,” Hydrological Processes, Vol. 17, No. 3, 2003, pp. 677-686. doi:10.1002/hyp.5103
[17] M. J. Zurada, “An Introduction to Artificial Neural Systems,” West Publishing Company, St Paul, 1997.
[18] G. J. Bowden, G. C. Dandy and H. R. Maier, “Input Determination for Neural Network Models in Water Resources Applications: 1. Background and Methodology,” Journal of Hydrology, Vol. 301, No. 1-4, 2004, pp. 75-92.
[19] G. J. Bowden, G. C. Dandy and H. R. Maier, “Input Determination for Neural Network Models in Water Resources Applications: 2. Background and Methodology,” Journal of Hydrology, Vol. 301, No. 1-4, 2004, pp. 93-107.
[20] K. C. Luk, J. E. Ball and A. Sharma, “A Study of Optimal Model Lag and Spatial Inputs to Artificial Neural Network for Rainfall Forecasting,” Journal of Hydrology, Vol. 227, No. 1-4, 2000, pp. 56-65. doi:10.1016/S0022-1694(99)00165-1
[21] D. Silverman and J. A. Dracup, “Artificial Neural Networks and Long-Range Precipitation Prediction in California,” Journal of Climate and Applied Meteorology, Vol. 39, No. 1, 2000, pp. 57-66. doi:10.1175/1520-0450(2000)039<0057:ANNALR>2.0.CO;2
[22] H. R. Maier and G. C. Dandy, “Neural Networks for the Prediction and Forecasting of Water Resources Variables: A Review of Modeling Issues and Applications,” Environmental Modelling & Software, Vol. 15, No. 1, 2000, pp. 101-124. doi:10.1016/S1364-8152(99)00007-9
[23] R. K. Srivastav, K. P. Sudheer and I. Chaubey, “A Simplified Approach to Quantifying Predictive and Parametric Uncertainty in Artificial Neural Network Hydrologic Models,” Water Resources Research, Vol. 43, No. 10, 2007, Article ID: W10407. doi:10.1029/2006WR005352
[24] J. E. Nash and J. V. Sutcliffe, “River Flow Forecasting through Conceptual Models: 1. A Discussion of Principles,” Journal of Hydrology, Vol. 10, No. 3, 1970, pp. 282-290. doi:10.1016/0022-1694(70)90255-6
[25] P. C. Nayak, K. P. Sudheer, D. M. Rangan and K. S. Ramasastri, “Short-Term Flood Forecasting with a Neu-rofuzzy Model,” Water Resources Research, Vol. 41, No. 4, 2005, Article ID: W04004. doi:10.1029/2004WR003562
[26] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning Representations by Back-Propagating Errors,” Nature, Vol. 323, No. 6088, 1986, pp. 533-536. doi:10.1038/323533a0
[27] A. Y. Shamseldin, “Application of a Neural Network Technique to Rainfall-Runoff Modelling,” Journal of Hydrology, Vol. 199, No. 3-4, 1997, pp. 272-294. doi:10.1016/S0022-1694(96)03330-6
[28] P. Mittal, S. Chowdhury, S. Roy, N. Bhatia and R. Srivastav, “Dual Artificial Neural Network for Rainfall-Runoff Forecasting,” Journal of Water Resource and Protection, Vol. 4, No. 12, 2012, pp. 1024-1028. doi:10.4236/jwarp.2012.412118

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.