Synthesis and Characterization of Mesostructured Cellular Foam (MCF) Silica Loaded with Nickel Nanoparticles as a Novel Catalyst


This work investigated the possibility of incorporation of nickel into several mesostructured cellular foam (MCF) silica supports prepared at various aging times (1, 2, and 3 days) by using deposition-precipitation method followed by reducetion process and to look for the best support to obtain supported nickel catalyst with highest nickel loading and smallest size of nickel nanoparticles. Analyses using nitrogen adsorption-desorption, transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) showed that MCF silica prepared at aging time of 3 days was the best support as the corresponding nickel functionalized MCF catalyst had the highest nickel content (17.57 wt%) and the smallest size of nickel nanoparticles (1 - 2 nm) together with high porosity (window pore size of 90A). The result was attributed to the highest window pore size in the MCF support which allowed more nickel nanoparticles to be incorporated.

Share and Cite:

L. Hermida, A. Abdullah and A. Mohamed, "Synthesis and Characterization of Mesostructured Cellular Foam (MCF) Silica Loaded with Nickel Nanoparticles as a Novel Catalyst," Materials Sciences and Applications, Vol. 4 No. 1, 2013, pp. 52-62. doi: 10.4236/msa.2013.41007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Maschmeyer, “Derivatised Mesoporous Solids,” Cur rent Opinion in Solid State and Materials Science, Vol. 3, No. 1, 1998, pp. 71-78. doi:10.1016/S1359-0286(98)80068-5
[2] T. M. Lancaster, S. S. Lee and J. Y. Ying, “Effect of Sur face Modification on the Reactivity of MCF-Supported IndaBOX,” Chemical Communications, Vol. 28, 2005, pp. 3577-3577. doi:10.1039/b506205e
[3] W. F. Taylor, D. J. C. Yates and J. H. Sinfelt, “Catalysis over Supported Metals. II. The Effect of the Support on the Catalytic Activity of Nickel for Ethane Hydrogeno lysis,” Journal of Physical Chemistry, Vol. 68, No. 10, 1964, pp. 2962-2966. doi:10.1021/j100792a038
[4] K. Niu, D. Shi, W. Dong, M. Chen and N. Zhongbin, “Chelating Template-Inducedencapsulation of NiO Cluster in Mesoporous Silica via Anionic Surfactant-Tem plated Route,” Journal of Colloid and Interface Science, Vol. 362, No. 1, 2011, pp. 74-80. doi:10.1016/j.jcis.2011.06.038
[5] L. Hermida, A. Z. Abdullah and A. R. Mohamed, “Post Synthetically Functionalized SBA-15 with Organosulfonic Acid and Sulfated Zirconia for Esterification of Glycerol to Monoglyceride,” Journal of Applied Sciences, Vol. 10, No. 24, 2010, pp. 3199-3206. doi:10.3923/jas.2010.3199.3206
[6] V. Degirmenci, A. Yilmaz and D. Uner, “Selective Me thane Bromination over Sulfated Zirconia in SBA-15 Catalysts,” Catalysis Today, Vol. 142, No. 1-2, 2009, pp. 30 33. doi:10.1016/j.cattod.2009.01.011
[7] T. Huang and W. Tu, “Modification of Functionalized Mesoporous Silica on the Formation and the Catalytic Performance of Platinum Nanocatalysts,” Applied Surface Science, Vol. 255, No. 17, 2009, pp. 7672-7678. doi:10.1016/j.apsusc.2009.04.134
[8] L. Hermida, A. Z. Abdullah and A. R. Mohamed, “Syn thesis of Monoglyceride through Glycerol Esterification with Lauric Acid over Propyl Sulfonic Acid Post-Synthesis Functionalized SBA-15 Mesoporous Catalyst,” Chemical Engineering Journal, Vol. 174, No. 2-3, 2011, pp. 668-676.
[9] R. I. Kureshy, I. Ahmad, K. Pathak, N. H. Khan, S. H. R. Abdi and R. V. Jasra, “Sulfonic acid Functionalized Me soporous SBA-15 as an Efficient and Recyclable Catalyst for the Synthesis of Chromenes from Chromanols,” Catalysis Communications, Vol. 10, No.5, 2009, pp. 572-575. doi:10.1016/j.catcom.2008.10.035
[10] L. Hermida, A. Z. Abdullah and A. R. Mohamed, “Effect of Functionalization Conditions of Sulfonic Acid Grafted SBA-15 on Catalytic Activity in the Esterification of Gly cerol to Monoglyceride: a Factorial Design Approach,” Journal of Porous Materials, Vol. 19, 2012, pp. 835-846. doi:10.1007/s10934-011-9538-x
[11] J. Chen, J. Zhou, R. Wang and J. Zhang, “Preparation, Characterization, and Performance of HMS-Supported Ni Catalysts for Hydrodechlorination of Chorobenzene,” Industrial and Engineering Chemistry Research, Vol. 48, No. 8, 2009, pp. 3802-3811.
[12] D. Liu, R. Lau, A. Borgna and Y. Yang, “Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni-MCM-41 Catalysts,” Applied Catalysis A: General, Vol. 358, No. 2, 2009, pp. 110-118. doi:10.1016/j.apcata.2008.12.044
[13] D. Liu, X. Y. Quek, H. H. A. Waha, G. Zeng, Y. Li and Y. Yang, “Carbon Dioxide Reforming of Methane over Nickel-Grafted SBA-15 and MCM-41 Catalysts,” Catalysis Today, Vol. 148, No. 3-4, 2009, pp. 243-250. doi:10.1016/j.cattod.2009.08.014
[14] R. Nares, J. Ramirez, A. Gutierrez-Alejandre and R. Cue vas, “Characterization and Hydrogenation Activity of Ni/Si(Al)-MCM-41 Catalysts Prepared by Deposition Pre cipitation,” Industrial and Engineering Chemistry Research, Vol. 48, No. 3, 2009, pp. 1154-1162. doi:10.1021/ie800569j
[15] M. Nele, A. Vidal, D. I. L. Bhering, J. V. Pinto and V. M. M. Salim, “Preparation of High Loading Silica Supported Nickel Catalyst: Simultaneous Analysis of the Precipitation and Aging Steps,” Applied Catalysis A: General, Vol. 178, No. 2, 1999, pp. 177-189. doi:10.1016/S0926-860X(98)00285-3
[16] R. Ryoo and S. Jun, “Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process,” The Journal of Physical Chemistry B, Vol. 101, No. 3, 1997, pp. 317-320. doi:10.1021/jp962500d
[17] S. Inagaki, Y. Sakamoto, Y. Fukushima and O. Terasaki, “Pore Wall of a Mesoporous Molecular Sieve Derived from Kanemite,” Chemistry of Materials, Vol. 8, No. 8, 1996, pp. 2089-2095. doi:10.1021/cm960115v
[18] K. A. Koyano and T. Tatsumi, “Synthesis of Titanium Containing MCM-41,” Microporous Materials, Vol. 10, No. 4-6, 1997, pp. 259-271. doi:10.1016/S0927-6513(97)00016-3
[19] P. Schmidt-Winkel, et al., “Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows,” Journal of the American Chemical Society, Vol. 21, No. 1, 1999, pp. 254-255. doi:10.1021/ja983218i
[20] J. S. Lettow, et al., “Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas,” Langmuir, Vol. 16, No. 22, 2000, pp. 8291-8295. doi:10.1021/la000660h
[21] D. T. On and S. Kaliaguine, “Zeolite-Coated Mesostructured Cellular Silica Foams,” Journal of the American Chemical Society, Vol. 125, No. 3, 2003, pp. 618-619. doi:10.1021/ja028656a
[22] Q. Li, Z. Wu, D. F. Eng, B. Tu and D. J. Zhao, “Hydro thermal Stability of Mesostructured Cellular Silica Foams,” The Journal of Physical Chemistry C, Vol. 114, No. 11, 2010, pp. 5012-5019. doi:10.1021/jp9100784
[23] Y. J. Han, J. T. Watson, G. D. Stucky and A. Butler, “Catalytic Activity of Mesoporous Silicate-Immobilized Chloroperoxidase,” Journal of Molecular Catalysis B, Vol. 17, No. 1, 2002, pp. 1-8. doi:10.1016/S1381-1177(01)00072-8
[24] Y. Han, S. S. Lee and J. Y. Ying, “Siliceous Mesocellular Foam for High-Performance Liquid Chromatography: Effect of Morphology and Pore Structure,” Journal of Chromatography A, Vol. 1217, No. 26, 2010, pp. 4337 4343. doi:10.1016/j.chroma.2010.04.041
[25] P. Schmidt-Winkel, C. J. Glinka and G. D. Stucky, “Microemulsion Templates for Mesoporous Silica,” Lang muir, Vol. 16, No. 2, 2000, pp. 356-361. doi:10.1021/la9906774
[26] P. Schmidt-Winkel, et al., “Microemulsion Templating of Siliceous Mesostructured Cellular Foams with Well-De fined Ultralarge Mesopore,” Chemistry of Materials, Vol. 12, No. 3, 2000, pp. 686-696. doi:10.1021/cm991097v
[27] J. Kim, R. J. Desch, S. W. Thiel, V. V. Guliants and N. G. Pinto, “Adsorption of Biomolecules on Mesostructured Cellular Foam Silica: Effect of Acid Concentration and Aging Time in Synthesis,” Microporous and Mesoporous Materials, Vol. 149, No. 1, 2012, pp. 60-68. doi:10.1016/j.micromeso.2011.08.031
[28] C. Louis, “Deposition-Precipitation of Supported Metal Catalysts,” In: J. Regalbuto, Ed., Catalyst Preparation Science and Engineering, Taylor and Francis, Inc., New York, 2007, pp. 319-340.
[29] P. Burattin, M. Che and C. Louis, “Molecular Approach to the Mechanism of Deposition-Precipitation of the Ni(II) Phase on Silica,” The Journal of Physical Chemistry B, Vol. 102, No. 15, 1998, pp. 2722-2732. doi:10.1021/jp980018k
[30] R. Iler, “The Chemistry of Silica,” John Wiley & Sons, New York, 1979.
[31] P. Burattin, M. Che and C. Louis, “Ni/SiO2 Materials Pre pared by Deposition-Precipitation: Influence of the Re duction Conditions and Mechanism of Formation of Me tal Particles,” The Journal of Physical Chemistry B, Vol. 104, No. 45, 2000, pp. 10482-10489. doi:10.1021/jp0003151
[32] P. Burattin, M. Che and C. Louis, “Metal Particle Size in Ni/SiO2 Materials Prepared by Deposition-Precipitation: Influence of the Nature of the Ni(II) Phase and of Its Interaction with the Support,” The Journal of Physical Chemistry B, Vol. 103, No. 30, 1999, pp. 6171-6178. doi:10.1021/jp990115t
[33] G. A. Martin, C. Mirodatos and H. Praliaud, “Chemistry of Silica-Supported Catalysts: Preparation, Activation and Reduction,” Applied Catalysis, Vol. 1, No. 6, 1981, pp. 367-382. doi:10.1016/0166-9834(81)80054-1
[34] M. Piumetti, et al., “Novel Vanadium-Containing Mesocellular Foams (V-MCF) Obtained by Direct Synthesis,” Microporous and Mesoporous Materials, Vol. 142, No. 1, 2011, pp. 45-54. doi:10.1016/j.micromeso.2010.11.010
[35] Y. M. Liu, et al., “Structure and Catalytic Properties of Vanadium Oxide Supported on Mesocellulous Silica Foams (MCF) for the Oxidative Dehydrogenation of Propane to Propylene,” Journal of Catalysis, Vol. 239, No. 1, 2006, pp. 125-136. doi:10.1016/j.jcat.2005.12.028
[36] A. Koriakin, K. M. Ponvel and C. H. Lee, “Denitrogenation of Raw Diesel Fuel by Lithium-Modified Mesoporous Silica,” Chemical Engineering Journal, Vol. 162, No. 2, 2010, pp. 649-655. doi:10.1016/j.cej.2010.06.014
[37] X. Yan, et al., “Amine-Modified Mesocellular Silica Foams for CO2 Capture,” Chemical Engineering Journal, Vol. 168, No. 2, 2011, pp. 918-924. doi:10.1016/j.cej.2011.01.066
[38] Y. M. Liu, et al., “Chromium Supported on Mesocellular Silica Foam (MCF) for Oxidative Dehydrogenation of Propane,” Catalysis Letters, Vol. 106, No. 3-4, 2006, pp. 145-152. doi:10.1007/s10562-005-9622-4
[39] K. S. W. Sing, “Adsorption Methods for the Characterization of Porous Materials,” Advances in Colloid and Interface Science, Vol. 76-77, 1998, pp. 3-11. doi:10.1016/S0001-8686(98)00038-4
[40] T. J. Barton, et al., “Tailored Porous Materials,” Chemistry of Materials, Vol. 11, No. 10, 1999, pp. 2633-2656. doi:10.1021/cm9805929
[41] K. S. W. Sing, et al., “Reporting Physisorption Data for Gas/Solid System-With Special Reference to the Determination of Surface and Porosity,” Pure and Applied Chemistry, Vol. 57, No. 4, 1985, pp. 603-618. doi:10.1351/pac198557040603
[42] C. Na-Chiangmai, et al., “Characteristics and Catalytic Properties of Mesocellular Foam Silica Supported Pd Nano Particles in the Liquid-Phase Selective Hydrogenation of Phenylacetylene,” Catalysis Letters, Vol. 141, No. 8, 2011, pp. 1149-1155. doi:10.1007/s10562-011-0593-3
[43] D. J. N. Subagyono, Z. Liang, G. P. Knowles and A. L. Chaffee, “Amine Modified Mesocellular Siliceous (MCF) as a Sorbent for CO2,” Chemical Engineering Research and Design, Vol. 89, No. 9, 2011, pp. 1647-1657. doi:10.1016/j.cherd.2011.02.019
[44] P. Burattin, M. Che and C. Louis, “Characterization of the Ni(II) Phase Formed on Silica Upon Deposition-Precipitation,” The Journal of Physical Chemistry B, Vol. 101, No. 36, 1997, pp. 7060-7074. doi:10.1021/jp970194d
[45] T. Huizinga and R. Prins, “ESR Investigations of Platinum Supported on Alumina and Titania,” The Journal of Physical Chemistry, Vol. 87, No. 1, 1983, pp. 173-176. doi:10.1021/j100224a037
[46] P. Turlier, H. Praliaud, P. Moral, G. A. Martin and J. A. Dalmon, “Influence of the Nature of the Support on the Reducibility and Catalytic Properties of Nickel: Evidence for a New Type of Metal Support Interaction,” Applied Catalysis, Vol. 19, No. 2, 1985, pp. 287-300. doi:10.1016/S0166-9834(00)81751-0
[47] L. Bonneviot, M. Che, D. Olivier, G. A. Martin and E. J. Freund, “Electron Microscopy and Magnetic Studies of the Interaction between Nickel and Silica: Considerations on Possible Anchoring Sites,” The Journal of Physical Chemistry, Vol. 90, No. 10, 1986, pp. 2112-1217. doi:10.1021/j100401a026
[48] H. Haberlandt and F. J. Ritschl, “Quantum Chemical Investigation of Support-Metal Interaction and Their Influence on Chemisorptions. 2. Strong Metal Support Interaction in H-Ni-MOx (M = Ti, Si),” The Journal of Physical Chemistry, Vol. 90, No. 18, 1986, pp. 4322-4330. doi:10.1021/j100409a020
[49] M. Che, D. Masure and P. Chaquin, “Theoretical Study of the Formation of Oxidesupported Metal Particles: Strength of the Chemical Glue as Represented by Transition Metal Ions at the Metal-Oxide Interface,” The Journal of Physical Chemistry, Vol. 97, No. 35, 1993, pp. 9022-9027. doi:10.1021/j100137a030
[50] J. W. E. Coenen, “Characterization of the Standard Nickel Silica Catalyst Euroni-1: III. Investigations of Catalyst Structure,” Applied Catalysis, Vol. 75, No. 1, 1991, pp. 193-223. doi:10.1016/S0166-9834(00)83132-2

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.