Share This Article:

On the Thermal Conductivity of Single-Walled Carbon Nanotube Ropes

DOI: 10.4236/snl.2013.31002    3,183 Downloads   5,205 Views   Citations


Recently measured thermal conductivity in single-walled carbon nanotube ropes in the temperature range 8 - 350 K has been explained using an anisotropic dynamical model which not only takes into account the quasi two-dimensional nature of the folded graphene sheets that forms the nanotubes, but also the intertube coupling, in addition to the phonon frequency and dimensionality dependent relaxation time of phonon-phonon scattering and interaction.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Silotia, S. Dabas, A. Saxena and S. Tewari, "On the Thermal Conductivity of Single-Walled Carbon Nanotube Ropes," Soft Nanoscience Letters, Vol. 3 No. 1, 2013, pp. 7-10. doi: 10.4236/snl.2013.31002.


[1] J. Hone, M. Whitney, C. Piskoti and A. Zettl, “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Physical Review B, Vol. 59, No. 4, 1999, pp. R2514-R2516.
[2] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smalley, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Walled Carbon Nanotube Films,” Applied Physical Letters, Vol. 77, No. 5, 2000, pp. 666-668. doi:10.1063/1.127079
[3] J. R. Olson, K. A. Topp and R. O. Pohl, “Specific Heat and Thermal Conductivity of Solid Fullerenes,” Science, Vol. 259, No. 5098, 1993, pp. 1145-1148. doi:10.1126/science.259.5098.1145
[4] R. Saito, T. Takeya, T. Kimura, G. Dresselhaus and M. S. Dresselhaus, “Raman Intensity of Single-Walled Carbon Nanotubes,” Physical Review B, Vol. 57, No. 7, 1998, pp. 4145-4153.
[5] S. P. Tewari, P. Silotia and K. Bera, “Role of Collective and Localized Modes on the Temperature-Dependent Thermal Conductivity in Polycrystalline C60 Fullerite Compacts,” Modern Physics Letters B, Vol. 11 No. 23, 1997, pp. 1031-1035. doi:10.1142/S0217984997001249
[6] J. Hone, “Carbon Nanotubes: Thermal Properties,” In: M. Dekker, Ed., Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, 2004, pp. 603-610.
[7] S. P. Tewari and P. K. Gumber, “Effect of Crystal Anisotropy in Zinc,” Physica C, Vol. 165, No. 3-4, 1990, pp. 325-327. doi:10.1016/0921-4534(90)90212-W
[8] S. P. Tewari and P. Silotia, “The Effect of Crystal Anisotropy on the Lamb Mossbauer Recoilless Fraction and Second-Order Doppler Shift in Zinc,” Journal of Physics: Condensed Matter, Vol. 1, No. 31, 1989, pp. 5165-5170. doi:10.1088/0953-8984/1/31/015
[9] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson and J. E. Fischer, “Quantized Phonon Spectrum of Single-Walled Carbon Nanotubes,” Science, Vol. 289 No. 5485, 2000, pp. 1730-1733. doi:10.1126/science.289.5485.1730
[10] S. P. Tewari, P. Silotia, S. Dabas and A. Saxena, “On the Excess Specific Heat of Single-Wall Carbon Nanotube Ropes Due to the Adsorption of Helium Atoms in the Temperature Range 2 - 20 K,” Journal of Nanophotonics, Vol. 2, No. 1, 2008, pp. 1-7.
[11] P. Silotia, S. Dabas, A. Saxena and S. P. Tewari, “Phonon Distribution of Aligned Multi-Walled Carbon Nanotubes,” Journal of Nanophotonics, Vol. 5, No. 1, 2011, pp. 1-9. doi:10.1117/1.3590198

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.