M. A. Friedl, E. Brodley and H. Strahler, “Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 1999, pp. 969-977. doi:10.1109/36.752215 [241] M. C. Hansen, R. S. DeFries, J. R. G. Townshend and R. Sohlberg, “Global Land Cover Classification at 1 km Spatial Resolution Using a Decision Tree Approach,” International Journal of Remote Sensing, Vol. 21, No. 6 & 7, 2000, pp. 1331-1364. doi:10.1080/014311600210209 [242] H. Kim and G. J. Koehler, “An Investigation on the Conditions of Pruning an Induced Decision Tree,” European Journal of Operational Research, Vol. 77, No. 1, 1994, pp. 82-95. doi:10.1016/0377-2217(94)90030-2 [243] Kweku-Muata and Osei-Bryson, “Post-Pruning in Decision Tree Induction Using Multiple Performance Measures,” Computers and Operations Research, Vol. 34, No. 11, 2007, pp. 3331-3345. doi:10.1016/j.cor.2005.12.009 [244] W. Cheng, K. Wang and X. Zhang, “Implementation of a COM-Based Decision-Tree Model with VBA in ArcGIS,” Expert System with Applications, Vol. 37, No. 1, 2010, pp. 12-17. doi:10.1016/j.eswa.2009.01.006 [245] F. Esposito, D. Malerba and G. Semeraro, “A Comparative Analysis of Methods for Pruning Decision Trees,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 5, 1997, pp. 476-491. doi:10.1109/34.589207 [246] A. Schneider, A. Friedl, K. Mciver and C. E. Woodcock “Mapping Urban Areas by Fusing Multiple Sources of Coarse Resolution Remotely Sensed Data,” Photogrammetric Engineering and Remote Sensing, Vol. 69, No. 12, 2003, pp. 1377-1386. [247] L. Matikainen, H. Kaartinen and J. Hyypp?, “ISPRS Archives,” Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, 12-14 September 2007, pp. 1-7. [248] Y. O. Ouma and R. Tateishi, “Urban-Trees Extraction from Quickbird Imagery Using Multiscale Spectex-Filtering and Non-Parametric Classification,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 63, No. 3, 2008, pp. 333-351. doi:10.1016/j.isprsjprs.2007.10.006 [249] T. R. Tooke, N. C. Coops, N. R. Goodwin and J. A. Voogt, “Extracting Urban Vegetation Characteristics Using Spectral Mixture Analysis and Decision Tree Classifications,” Remote Sensing of Environment, Vol. 113, No. 2, 2009, pp. 398-407. doi:10.1016/j.rse.2008.10.005 [250] D. G. Brown, S. Page, R. Riolo, M. Zellner and W. Rand, “Path Dependence and the Validation of Agent-Based Spatial Models of Land Use,” International Journal of Geographical Information Science, Vol. 19, No. 2, 2005, pp. 153-174. doi:10.1080/13658810410001713399 [251] J. Miller and J. Franklin, “Modeling the Distribution of Four Vegetation Alliances Using Generalized Linear Models and Classification Trees with Spatial Dependence,” Ecological Modelling, Vol. 157, No. 2-3, 2002, pp. 222247. doi:10.1016/S0304-3800(02)00196-5 [252] J. J. Lennon, “Red-Shifts and Red Herrings in Geographical Ecology,” Ecography, Vol. 23, No. 1, 2000, pp. 101113. doi:10.1111/j.1600-0587.2000.tb00265.x [253] J. A. F. Diniz-Filho, L. M. Bini and B. A. Hawkins, “Spatial Autocorrelation and Red Herrings in Geographical Ecology,” Global Ecology and Biogeography, Vol. 12, No. 1, 2003, pp. 53-64. doi:10.1046/j.1466-822X.2003.00322.x [254] B. Lees, “The Spatial Analysis of Spectral Data: Extracting the Neglected Data,” Applied GIS, Vol. 2, No. 2, 2006, pp. 14.1-14.13. [255] P. A. Smith, “Autocorrelation in Logistic Regression Modeling of Species’ Distributions,” Global Ecology and Biogeography Letters, Vol. 4, No. 2, 1994, pp. 47-61. doi:10.2307/2997753 [256] M. Fortin, P. Drapeau and P. Legendre, “Spatial Autocorrelation and Sampling Design in Plant Ecology,” Plant Ecology, Vol. 83, No. 1, 1989, pp. 209-222. doi:10.1007/BF00031693 [257] F. E. Nelson, K. M. Hinkel, N. I. Shiklomanov, G. R. Mueller and L. L. Miller, “Active-Layer Thickness in North Central Alaska: Systematic Sampling, Scale, and Spatial Autocorrelation,” Journal of Geophysical Research, Vol. 103, No. D22, 1998, pp. 28963-28973. doi:10.1029/98JD00534 [258] X. Li and C. Claramunt, “A Spatial Entropy-Based Decision Tree for Classification of Geographical Information,” Transactions in GIS, Vol. 10, No. 3, 2006, pp. 451-467. doi:10.1111/j.1467-9671.2006.01006.x [259] K. Dwyer and R. Holte, “Decision Tree Instability and Active Learning,” In: J. Kok, J. Koronacki, R. Mantaras, S. Matwin and D. Mladenic, Eds., Machine Learning: ECML 2007, Springer Berlin, Heidelberg, 2007, pp. 128139. doi:10.1007/978-3-540-74958-5_15 [260] H. Kim and W. Loh, “Classification Trees with Unbiased Multiway Splits,” Journal of the American Statistical Association, Vol. 96, No. 454, 2001, pp. 589-604. doi:10.1198/016214501753168271 [261] UN Habitat for a Better Future, “Planning Sustainable Cities—Global Report on Human Settlements,” 2009. http://www.unhabitat.org/content.asp?typeid=%2019&catid=555&cid=5607 [262] K. L?fvenhaft, C. Bj?rn and M. Ihse, “Biotope Patterns in Urban Areas: A Conceptual Model Integrating Biodiversity Issues in Spatial Planning,” Landscape and Urban Planning, Vol. 58, No. 2-4, 2002, pp. 223-240. doi:10.1016/S0169-2046(01)00223-7 [263] D. Triantakonstantis, “Urban Growth Modelling Using Determinism and Stochasticity in a Touristic Village in Western Greece,” Open Journal of Civil Engineering, Vol. 2, No. 1, 2012, pp. 42-48. doi:10.4236/ojce.2012.21007

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.