Effect of Risperidone and Fluoxetine on the Movement and Neurochemical Changes of Zebrafish

DOI: 10.4236/ojmc.2012.24016   PDF   HTML     5,399 Downloads   9,192 Views   Citations


Brain developmental disorders in humans, including Autism Spectrum Disorders (ASD) and Downs syndrome, have been linked to increased serotonin levels. This work was designed to study changes in serotonin levels in the early stages of development with two classes of antipsychotic drugs: Risperidone, a drug that blocks serotonin and dopamine receptors, and fluoxetine, a serotonin reuptake inhibitor. The use of antipsychotic drugs is a solid choice to study the decrease and increase of these neurotransmitters and their influence on development. The study of these parameters will give an idea of the effects of serotonin in early developmental stages. To this end, we examined the effects of risperidone and fluoxetine on the locomotor activity, heart rate and brain development of zebrafish larvae. Our results showed that in larvae exposed to fluoxetine alone, swimming was significantly increased at 9 dpf (days post-fertilization). Erratic and abnormal movements were observed suggesting a toxic effect of fluoxetine. No erratic swimming was observed in larvae treated with fluoxetine plus risperidone. Both drugs presented morphological changes in dopaminergic neurons and mononeurons. Exposure to fluoxetine plus risperidone indicated possible reversal effects. Studies in zebrafish allow obtaining new insights into the side effects of these drugs as well as into the brain control of locomotor activity. Testing several drug-induced changes in behavior and serotonin levels is one of the experimental approaches for screening a new therapeutically relevant compound, and thus, merits further research.

Share and Cite:

M. Prieto, H. Gutierrez, R. Arévalo, N. Chiaramoni and S. Alonso, "Effect of Risperidone and Fluoxetine on the Movement and Neurochemical Changes of Zebrafish," Open Journal of Medicinal Chemistry, Vol. 2 No. 4, 2012, pp. 129-138. doi: 10.4236/ojmc.2012.24016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. C. Azmitia, “Modern Views on an Ancient Chemical: Serotonin Effects on Cell Proliferation, Maturation, and Apoptosis,” Brain Research Bulletin, Vol. 56, No. 5, 2001, pp. 413-424. doi:10.1016/S0361-9230(01)00614-1
[2] J. Lauder and H. Krebs, “Serotonin as a Differentiation Signal in Early Neurogenesis,” Developmental Neuroscience, Vol. 1, No. 1, 1978, pp. 15-30. doi:10.1159/000112549
[3] M. J. Prieto, et al., “Optimization and in Vitro Toxicity Evaluation of G4 PAMAM Dendrimer-Risperidone Complexes,” European Journal of Medicinal Chemistry, Vol. 46, No. 3, 2011, pp. 845-850. doi:10.1016/j.ejmech.2010.12.021
[4] E. H. Cook Jr., et al., “Evidence of Linkage between the Serotonin Transporter and Autistic Disorder,” Molecular Psychiatry, Vol. 2, No. 3, 1997, pp. 247-250. doi:10.1038/sj.mp.4000266
[5] E. H. Cook Jr. and B. L. Leventhal, “The Serotonin System in Autism,” Current Opinion in Pediatrics, Vol. 8, No. 4, 1996, pp. 348-354. doi:10.1097/00008480-199608000-00008
[6] M. M. Scott and E. S. Deneris, “Making and Breaking Serotonin Neurons and Autism,” International Journal of Developmental Neuroscience, Vol. 23, No. 2-3, 2005, pp. 277-285. doi:10.1016/j.ijdevneu.2004.05.012
[7] M. J. Airhart, et al., “Movement Disorders and Neurochemical Changes in Zebrafish Larvae after Bath Exposure to Fluoxetine (PROZAC),” Neurotoxicology and Tera- tology, Vol. 29, No. 6, 2007, pp. 652-664. doi:10.1016/j.ntt.2007.07.005
[8] C. R. Marshall, et al., “Structural Variation of Chromosomes in Autism Spectrum Disorder,” The American Journal of Human Genetics, Vol. 82, No. 2, 2008, pp. 477-488. doi:10.1016/j.ajhg.2007.12.009
[9] R. P. Malone and A. Waheed, “The Role of Antipsychotics in the Management of Behavioural Symptoms in Children and Adolescents with Autism,” Drugs, Vol. 69, No. 5, 2009, pp. 535-548. doi:10.2165/00003495-200969050-00003
[10] E. Courchesne, et al., “Mapping Early Brain Development in Autism,” Neuron, Vol. 56, No. 2, 2007, pp. 399- 413. doi:10.1016/j.neuron.2007.10.016
[11] P. A. McBride, et al., “Serotonergic Responsivity in Male Young Adults with Autistic Disorder. Results of a Pilot Study,” Archives of General Psychiatry, Vol. 46, No. 3, 1989, pp. 213-221. doi:10.1001/archpsyc.1989.01810030019003
[12] C. J. McDougle, et al., “Effects of Tryptophan Depletion in Drug-Free Adults with Autistic Disorder,” Archives of General Psychiatry, Vol. 53, No. 11, 1996, pp. 993-1000. doi:10.1001/archpsyc.1996.01830110029004
[13] R. C. Casper, et al., “Follow-Up of Children of Depressed Mothers Exposed or not Exposed to Antidepressant Drugs during Pregnancy,” Journal of Pediatrics, Vol. 142, No. 4, 2003, pp. 402-408. doi:10.1067/mpd.2003.139
[14] D. T. Wong, F. P. Bymaster and E. A. Engleman, “Prozac (Fluoxetine, Lilly 110140), the First Selective Serotonin Uptake Inhibitor and an Antidepressant Drug: Twenty Years since Its First Publication,” Life Sciences, Vol. 57, No. 5, 1995, pp. 411-441. doi:10.1016/0024-3205(95)00209-O
[15] K. L. Grant, “Investigational Drug Tracking: Phases I-III and NDA Submissions—Part I,” Hospital Pharmacy, Vol. 29, No. 9, 1994, pp. 830-836, 839-844, 847-852.
[16] Y. A. Su, et al., “Risperidone Attenuates MK-801-Induced Hyperlocomotion in Mice via the Blockade of Serotonin 5-HT 2A/2C Receptors,” European Journal of Pharmacology, Vol. 564, No. 1-3, 2007, pp. 123-130. doi:10.1016/j.ejphar.2007.02.031
[17] B. L. Jacobs and C. A. Fornal, “Serotonin and Motor Activity,” Current Opinion in Neurobiology, Vol. 7, No. 6, 1997, pp. 820-825. doi:10.1016/S0959-4388(97)80141-9
[18] C. Lillesaar, “The Serotonergic System in Fish,” Journal of Chemical Neuroanatomy, Vol. 41, No. 4, 2011, pp. 294-308. doi:10.1016/j.jchemneu.2011.05.009
[19] D. L. McLean and J. R. Fetcho, “Relationship of Tyrosine Hydroxylase and Serotonin Immunoreactivity to Sensorimotor Circuitry in Larval Zebrafish,” Journal of Comparative Neurology, Vol. 480, No. 1, 2004, pp. 57-71. doi:10.1002/cne.20281
[20] M. A. Akimenko, et al., “Differential Induction of Four msx Homeobox Genes during Fin Development and Regeneration in Zebrafish,” Development, Vol. 121, No. 2, 1995, pp. 347-357.
[21] E. Weruaga, et al., “Distribution of the Calcium-Binding Proteins Parvalbumin, Calbindin D-28k and Calretinin in the Retina of Two Teleosts,” Journal of Chemical Neuroanatomy, Vol. 19, No. 1, 2000, pp. 1-15. doi:10.1016/S0891-0618(00)00046-6
[22] D. Clemente, et al., “Effects of Axotomy on the Expression of NADPH-Diaphorase in the Visual Pathway of the Tench,” Brain Research, Vol. 925, No. 2, 2002, pp. 183-194. doi:10.1016/S0006-8993(01)03279-6
[23] F. J. Arenzana, et al., “Teratogenic Effects of Ethanol Exposure on Zebrafish Visual System Development,” Neurotoxicology and Teratology, Vol. 28, No. 3, 2006, pp. 342-348. doi:10.1016/j.ntt.2006.02.001
[24] F. J. Arenzana, et al., “Tyrosine Hydroxylase Immunoreactivity in the Developing Visual Pathway of the Zebrafish,” Anatomy and Embryology, Vol. 211, No. 4, 2006, pp. 323-334. doi:10.1007/s00429-006-0084-2
[25] E. Kabashi, et al., “Zebrafish Models for the Functional Genomics of Neurogenetic Disorders,” Biochimica et Biophysica Acta, Vol. 1812, No. 3, 2010, pp. 335-345.
[26] P. Drapeau, et al., “Development of the Locomotor Network in Zebrafish,” Progress in Neurobiology, Vol. 68, No. 2, 2002, pp. 85-111. doi:10.1016/S0301-0082(02)00075-8
[27] S. Bretaud, S. Lee and S. Guo, “Sensitivity of Zebrafish to Environmental Toxins Implicated in Parkinson’s Disease,” Neurotoxicology and Teratology, Vol. 26, No. 6, 2004, pp. 857-864. doi:10.1016/j.ntt.2004.06.014
[28] K. J. Seibt, et al., “Antipsychotic Drugs Inhibit Nucleotide Hydrolysis in Zebrafish (Danio rerio) Brain Membranes,” Toxicology in Vitro, Vol. 23, No. 1, 2009, pp. 78-82. doi:10.1016/j.tiv.2008.10.003
[29] N. J. Giacomini, et al., “Antipsychotics Produce Locomotor Impairment in Larval Zebrafish,” Anatomy and Embryology, Vol. 28, No. 2, 2006, pp. 245-250. doi:10.1016/j.ntt.2006.01.013
[30] F. Adrio, R. Anadon and I. Rodriguez-Moldes, “Distribution of Serotonin (5HT)-Immunoreactive Structures in the Central Nervous System of Two Chondrostean Species (Acipenser baeri and Huso huso),” Journal of Comparative Neurology, Vol. 407, No. 3, 1999, pp. 333-348. doi:10.1002/(SICI)1096-9861(19990510)407:3<333::AID-CNE3>3.0.CO;2-R
[31] M. Antri, et al., “Ontogeny of 5-HT Neurons in the Brainstem of the Lamprey, Petromyzon marinus,” Journal of Comparative Neurology, Vol. 495, No. 6, 2006, pp. 788-800. doi:10.1002/cne.20910
[32] A. Barreiro-Iglesias, et al., “Descending Brain-Spinal Cord Projections in a Primitive Vertebrate, the Lamprey: Cerebrospinal Fluid-Contacting and Dopaminergic Neurons,” Journal of Comparative Neurology, Vol. 511, No. 6, 2008, pp. 711-723. doi:10.1002/cne.21863
[33] T. F. Batten, et al., “Immunolocalization of Catecholamine Enzymes, Serotonin, Dopamine and L-Dopa in the Brain of Dicentrarchus labrax (Teleostei),” Brain Research Bulletin, Vol. 31, No. 3-4, 1993, pp. 233-252. doi:10.1016/0361-9230(93)90214-V
[34] V. Bolliet and M. A. Ali, “Immunohistochemical Study of the Development of Serotoninergic Neurons in the Brain of the Brook Trout Salvelinus fontinalis,” Brain, Behavior and Evolution, Vol. 40, No. 5, 1992, pp. 234-249. doi:10.1159/000113915
[35] I. Carrera, et al., “Development of the Serotoninergic System in the Central Nervous System of a Shark, the Lesser Spotted Dogfish Scyliorhinus canicula,” Journal of Comparative Neurology, Vol. 511, No. 6, 2008, pp. 804-831. doi:10.1002/cne.21857
[36] A. Chiba and S. Oka, “Serotonin-Immunoreactive Structures in the Central Nervous System of the Garfish Lepisosteus productus (Semionotiformes, Osteichthyes),” Neuroscience Letters, Vol. 261, No. 1-2, 1999, pp. 73-76. doi:10.1016/S0304-3940(98)01011-8
[37] M. Corio, J. Peute and H. W. Steinbusch, “Distribution of Serotonin- and Dopamine-Immunoreactivity in the Brain of the Teleost Clarias gariepinus,” Journal of Chemical Neuroanatomy, Vol. 4, No. 2, 1991, pp. 79-95. doi:10.1016/0891-0618(91)90033-9
[38] S. A. Johnston, L. Maler and B. Tinner, “The Distribution of Serotonin in the Brain of Apteronotus leptorhynchus: An Immunohistochemical Study,” Journal of Chemical Neuroanatomy, Vol. 3, No. 6, 1990, pp. 429-465.
[39] I. A. Khan and P. Thomas, “Immunocytochemical Localization of Serotonin and Gonadotropin-Releasing Hormone in the Brain and Pituitary Gland of the Atlantic Croaker Micropogonias undulatus,” General and Comparative Endocrinology, Vol. 91, No. 2, 1993, pp. 167-180. doi:10.1006/gcen.1993.1116
[40] J. Meek and H. W. Joosten, “Distribution of Serotonin in the Brain of the Mormyrid Teleost Gnathonemus petersii,” Journal of Comparative Neurology, Vol. 281, No. 2, 1989, pp. 206-224. doi:10.1002/cne.902810205
[41] J. Pierre, et al., “The Serotoninergic System of the Brain of the Lamprey, Lampetra fluviatilis: An Evolutionary Perspective,” Journal of Chemical Neuroanatomy, Vol. 5, No. 3, 1992, pp. 195-219. doi:10.1016/0891-0618(92)90046-S
[42] F. J. Rodriguez-Gomez, et al., “Distribution of Serotonin in the Brain of the Senegalese Sole, Solea senegalensis: An Immunohistochemical Study,” Journal of Chemical Neuroanatomy,Vol. 18, No. 3, 2000, pp. 103-115. doi:10.1016/S0891-0618(99)00049-6
[43] S. L. Stuesse and W. L. Cruce, “Distribution of Tyrosine Hydroxylase, Serotonin, and Leu-Enkephalin Immunoreactive Cells in the Brainstem of a Shark, Squalus acanthias,” Brain, Behavior and Evolution, Vol. 39, No. 2, 1992, pp. 77-92. doi:10.1159/000114106
[44] S. L. Stuesse, W. L. Cruce and R. G. Northcutt, “Distribution of Tyrosine Hydroxylaseand Serotonin-Immunoreactive Cells in the Central Nervous System of the Thornback Guitarfish, Platyrhinoidis triseriata,” Journal of Chemical Neuroanatomy, Vol. 3, No. 1, 1990, pp. 45-58.
[45] S. L. Stuesse, W. L. Cruce and R. G. Northcutt, “Localization of Serotonin, Tyrosine Hydroxylase, and Leu- Enkephalin Immunoreactive Cells in the Brainstem of the Horn Shark, Heterodontus francisci,” Journal of Comparative Neurology, Vol. 308, No. 2, 1991, pp. 277-292. doi:10.1002/cne.903080211
[46] S. L. Stuesse, D. C. Stuesse and W. L. Cruce, “Raphe Nu- clei in Three Cartilaginous Fishes, Hydrolagus colliei, Heterodontus francisci, and Squalus acanthias,” Journal of Comparative Neurology, Vol. 358, No. 3, 1995, pp. 414-427. doi:10.1002/cne.903580308
[47] T. C. Ritchie, et al., “The Distribution of Serotonin in the CNS of an Elasmobranch Fish: Immunocytochemical and Biochemical Studies in the Atlantic stingray, Dasyatis sabina,” Journal of Comparative Neurology, Vol. 221, No. 4, 1983, pp. 429-443. doi:10.1002/cne.902210406
[48] P. Ekstrom, “Developmental Changes in the Brain-Stem Serotonergic Nuclei of Teleost Fish and Neural Plasticity,” Cellular and Molecular Neurobiology, Vol. 14, No. 4, 1994, pp. 381-393. doi:10.1007/BF02088718
[49] J. Kaslin and P. Panula, “Comparative Anatomy of the Histaminergic and other Aminergic Systems in Zebrafish (Danio rerio),” Journal of Comparative Neurology, Vol. 440, No. 4, 2001, pp. 342-377. doi:10.1002/cne.1390
[50] O. Kah and P. Chambolle, “Serotonin in the Brain of the Goldfish, Carassius auratus. An Immunocytochemical Stu- dy,” Cell and Tissue Research, Vol. 234, No. 2, 1983, pp. 319-333. doi:10.1007/BF00213771
[51] J. Meek, “Functional Anatomy of the Tectum Mesencephali of the Goldfish. An Explorative Analysis of the Functional Implications of the Laminar Structural Organization of the Tectum,” Brain Research, Vol. 287, No. 3, 1983, pp. 247-297.
[52] R. G. Northcutt, “Connections of the Lateral and Medial Divisions of the Goldfish Telencephalic Pallium,” Journal of Comparative Neurology, Vol. 494, No. 6, 2006, pp. 903-943. doi:10.1002/cne.20853
[53] M. Portavella, et al., “The Effects of Telencephalic Pallial Lesions on Spatial, Temporal, and Emotional Learning in Goldfish,” Brain Research Bulletin, Vol. 57, No. 3-4, 2002, pp. 397-399. doi:10.1016/S0361-9230(01)00699-2
[54] M. F. Wullimann and T. Mueller, “Teleostean and Mammalian Forebrains Contrasted: Evidence from Genes to Behavior,” Journal of Comparative Neurology, Vol. 475, No. 2, 2004, pp. 143-162. doi:10.1002/cne.20183
[55] H. Imai, D. A. Steindler and S. T. Kitai, “The Organization of Divergent Axonal Projections from the Midbrain Raphe Nuclei in the Rat,” Journal of Comparative Neurology, Vol. 243, No. 3, 1986, pp. 363-380. doi:10.1002/cne.902430307
[56] L. P. Morin and E. L. Meyer-Bernstein, “The Ascending Serotonergic System in the Hamster: Comparison with Projections of the Dorsal and Median Raphe Nuclei,” Neuroscience, Vol. 91, No. 1, 1999, pp. 81-105.
[57] L. Lemberger, et al., “Fluoxetine: Clinical Pharmacology and Physiologic Disposition,” Journal of Clinical Psychiatry, Vol. 46, No. 3, 1985, pp. 14-19.
[58] S. Kanda, et al., “Over-Expression of bHLH Genes Facilitate Neural Formation of Mouse Embryonic Stem (ES) Cells in Vitro,” International Journal of Developmental Neuroscience, Vol. 22, No. 3, 2004, pp. 149-156. doi:10.1016/j.ijdevneu.2004.01.002
[59] G. E. Spencer, J. Klumperman and N. I. Syed, “Neurotransmitters and Neurodevelopment. Role of Dopamine in Neurite Outgrowth, Target Selection and Specific Synapse Formation,” Perspectives on Developmental Neurobiology, Vol. 5, No. 4, 1998, pp. 451-467.
[60] B. Pasteels, et al., “Calbindin and Calretinin Localization in Retina from Different Species,” Visual Neuroscience, Vol. 5, No. 1, 1990, pp. 1-16. doi:10.1017/S0952523800000031
[61] J. H. Rogers, “Calretinin: A Gene for a Novel Calcium-Binding Protein Expressed Principally in Neurons,” The Journal of Cell Biology, Vol. 105, No. 3, 1987, pp. 1343-1353. doi:10.1083/jcb.105.3.1343
[62] R. Guglielmone and G. Corvetti, “First Appearance and Distribution of Calretinin-Immunoreactive Neurons in the Early Development of the Chick Central Nervous System,” Cell and Tissue Research, Vol. 300, No. 1, 2000, pp. 21-28. doi:10.1007/s004410050044
[63] M. Dolder, et al., “Crystallization of the Human, Mitochondrial Voltage-Dependent Anion-Selective Channel in the Presence of Phospholipids,” Journal of Structural Biology, Vol. 127, No. 1, 1999, pp. 64-71. doi:10.1006/jsbi.1999.4141
[64] C. Tessier, et al., “Modification of Membrane Heterogeneity by Antipsychotic Drugs: An X-Ray Diffraction Comparative Study,” Journal of Colloid and Interface Science, Vol. 320, No. 2, 2008, pp. 469-475. doi:10.1016/j.jcis.2008.01.034
[65] M. A. Carfagna and B. B. Muhoberac, “Interaction of Tricyclic Drug Analogs with Synaptic Plasma Membranes: Structure-Mechanism Relationships in Inhibition of Neuronal Na+/K(+)-ATPase Activity,” Molecular Pharmacology, Vol. 44, No. 1, 1993, pp. 129-141.
[66] A. Jutila, et al., “Comparison of the Effects of Clozapine, Chlorpromazine, and Haloperidol on Membrane Lateral Heterogeneity,” Chemistry and Physics of Lipids, Vol. 112, No. 2, 2001, pp. 151-163.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.