A Review Study on Amplification of X-Ray Free Electron Laser Pulse in Plasma

DOI: 10.4236/jmp.2012.312250   PDF   HTML     5,357 Downloads   7,305 Views   Citations


In view of X-ray Free Electron Laser (XFEL) intensity prospects, we reviewed the past and recent work in view of amplification of powerful XFEL laser pulse to achieve intensity in the regime of high field science. We report here some of the relevant work investigated in this field and predicted further scalings and possibilities for XFEL pulse amplification.

Share and Cite:

A. Sharma, "A Review Study on Amplification of X-Ray Free Electron Laser Pulse in Plasma," Journal of Modern Physics, Vol. 3 No. 12, 2012, pp. 1998-2003. doi: 10.4236/jmp.2012.312250.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Ackermann, et al., “Operation of a Free-Electron Laser from the Extreme Ultraviolet to the Water Window,” Nature Photonics, Vol. 1, No. 6, 2007, pp. 336-342. doi:10.1038/nphoton.2007.76
[2] P. Emma, et al., “First Lasing and Operation of an Angstrom-Wavelength Free-Electron Laser,” Nature Photonics, Vol. 4, No. 9, 2010, pp. 641-647. doi:10.1038/nphoton.2010.176
[3] T. Ishikawa, et al., “A Compact X-Ray Free-Electron Laser Emitting in the Sub-Angstrom Region,” Nature Photonics, Vol. 6, No. 11, 2012, pp. 540-544. doi:10.1038/nphoton.2012.141
[4] L. Young, et al., “Femtosecond Electronic Response of Atoms to Ultra-Intense X-Rays,” Nature, Vol. 466, No. 7302, 2010, pp. 56-61. doi:10.1038/nature09177
[5] G. Doumy, et al., “Nonlinear Atomic Response to Intense Ultrashort X-Rays,” Physical Review Letters, Vol. 106, No. 8, 2011, Article ID: 083002. doi:10.1103/PhysRevLett.106.083002
[6] M. Hoener, et al., “Ultraintense X-Ray Induced Ionization, Dissociation, and Frustrated Absorption in Molecular Nitrogen,” Physical Review Letters, Vol. 104, No. 25, 2010, Article ID: 253002. doi:10.1103/PhysRevLett.104.253002
[7] J. P. Cryan, et al., “Auger Electron Angular Distribution of Double Core-Hole States in the Molecular Reference Frame,” Physical Review Letters, Vol. 105, No. 8, 2010, Article ID: 083004. doi:10.1103/PhysRevLett.105.083004
[8] L. Fang, et al., “Double Core-Hole Production in N2: Beating the Auger Clock,” Physical Review Letters, Vol. 105, No. 8, 2010, Article ID: 083005. doi:10.1103/PhysRevLett.105.083005
[9] S. M. Vinko, et al., “Creation and Diagnosis of a Solid-Density Plasma with an X-Ray Free-Electron Laser,” Nature, Vol. 482, No. 7383, 2012, pp. 59-62. doi:10.1038/nature10746
[10] Reiche, et al., “Start-to-End Simulation for the LCLS X-Ray FEL,” Nuclear Instruments and Methods A, Vol. 483, No. 1, 2002, pp. 70-74. doi:10.1016/S0168-9002(02)00288-7
[11] P. Emma, et al., “Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous-Emission Based Free-Electron Laser,” Physical Review Letters, Vol. 92, No. 7, 2004, Article ID: 074801. doi:10.1103/PhysRevLett.92.074801
[12] E. L. Saldin, et al., “Scheme for Attophysics Experiments at a X-Ray SASE FEL,” Optics and Communications, Vol. 212, No. 4, 2002, pp. 377-390. doi:10.1016/S0030-4018(02)02008-4
[13] A. Jarre, et al., “Two-Dimensional Hard X-Ray Beam Compression by Combined Focusing and Waveguide Optics,” Physical Review Letters, Vol. 94, No. 7, 2005, Article ID: 074801.
[14] C. G. Schroer, et al., “Hard X-Ray Nanoprobe Based on Refractive X-Ray Lenses,” Applied Physics Letters, Vol. 87, No. 12, 2005, Article ID: 124103. doi:10.1063/1.2053350
[15] W. Liu, et al., “Short Focal Length Kirkpatrick-Baez Mirrors for a Hard X-Ray Nanoprobe,” Review of Scientific Instruments, Vol. 76, No. 11, 2005, Article ID: 113701. doi:10.1063/1.2125730
[16] C. Bergemann, et al., “Focusing X-Ray Beams to Nanometer Dimensions,” Physical Review Letters, Vol. 91, No. 20, 2003, Article ID: 204801. doi:10.1103/PhysRevLett.91.204801
[17] C. G. Schroer, et al., “Focusing Hard X Rays to Nanometer Dimensions by Adiabatically Focusing Lenses,” Physical Review Letters, Vol. 94, No. 5, 2005, Article ID: 054802. doi:10.1103/PhysRevLett.94.054802
[18] V. M. Malkin, et al., “Compression of Powerful X-Ray Pulses to Attosecond Durations by Stimulated Raman Backscattering in Plasmas,” Physical Review E, Vol. 75, No. 2, 2007, Article ID: 026404. doi:10.1103/PhysRevE.75.026404
[19] P. J. Mardahl, et al., “Intense Laser Pulse Amplification Using Raman Backscatter in Plasma Channels,” Physics Letters A, Vol. 296, No. 2, 2002, pp. 109-116. doi:10.1016/S0375-9601(02)00194-9
[20] D. S. Clark and N. J. Fisch, “Particle-in-Cell Simulations of Raman Laser Amplification in Preformed Plasmas,” Physics of Plasmas, Vol. 10, No. 12, 2003, pp. 4848-4855. doi:10.1063/1.1625940
[21] D. S. Clark and N. J. Fisch, “Raman Laser Amplification in Preformed and Ionizing Plasmas,” Laser and Particle Beams, Vol. 23, No. 1, 2005, pp. 101-106. doi:10.1017/S0263034605050172
[22] R. M. G. M. Trines, et al., “Simulations of Efficient Raman Amplification into the Multipetawatt Regime,” Nature Physics, Vol. 7, No. 1, 2011, pp. 87-92. doi:10.1038/nphys1793
[23] W. Cheng, et al., “Reaching the Nonlinear Regime of Raman Amplification of Ultrashort Laser Pulses,” Physical Review Letters, Vol. 94, No. 4, 2005, Article ID: 045003. doi:10.1103/PhysRevLett.94.045003
[24] J. Ren, et al., “A Compact Double-Pass Raman Backscattering Amplifier/Compressor,” Physics of Plasmas, Vol. 15, No. 5, 2008, Article ID: 056702. doi:10.1063/1.2844352
[25] D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Optics and Communications, Vol. 56, No. 3, 1985, pp. 219-221. doi:10.1016/0030-4018(85)90120-8
[26] N. J. Fisch and V. M. Malkin, “Generation of Ultrahigh Intensity Laser Pulses,” Physics of Plasmas, Vol. 10, No. 5, 2003, pp. 2056-2063. doi:10.1063/1.1567290
[27] J. R. Murray, et al., “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE Journal of Quantum Electronics, Vol. 15, No. 5, 1979, pp. 342-368. doi:10.1109/JQE.1979.1070009
[28] C. J. McKinstrie and A. Simon, “Nonlinear Saturation of the Absolute Stimulated Raman Scattering Instability in a Finite Collisional Plasma,” Physics of Fluids, Vol. 29, No. 6, 1986, pp. 1959-1970. doi:10.1063/1.865623
[29] V. M. Malkin and N. J. Fisch, “Quasitransient Regimes of Backward Raman Amplification of Intense X-Ray Pulses,” Physical Review E, Vol. 80, No. 4, 2009, Article ID: 046409. doi:10.1103/PhysRevE.80.046409
[30] V. M. Malkin and N. J. Fisch, “Quasitransient Backward Raman Amplification of Powerful Laser Pulses in Dense Plasmas with Multicharged Ions,” Physics of Plasmas, Vol. 17, No. 7, 2010, Article ID: 073109. doi:10.1063/1.3460347
[31] L. D. Landau and E. M. Lifshitz, “The Classsical Theory of Fields,” 2nd Edition, Elsevier, Oxford, 1975.
[32] M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel and A. Macchi, “Radiation Reaction Effects on Radiation Pressure Acceleration,” New Journal of Physics, Vol. 12, No. 12, 2010, Article ID: 123005. doi:10.1088/1367-2630/12/12/123005
[33] A. Zhidkov, J. Koga, A. Sasaki and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultraintense Laser Pulses with an Overdense Plasma,” Physical Review Letters, Vol. 88, No. 18, 2002, Article ID: 185002. doi:10.1103/PhysRevLett.88.185002
[34] N. H. Burnett and P. B. Corkum, “Cold-Plasma Production for Recombination Extremeultraviolet Lasers by Optical-Field-Induced Ionization,” Journal of Optical Society of America B, Vol. 6, No. 6, 1989, pp. 1195-1199. doi:10.1364/JOSAB.6.001195
[35] S. V. Kukhlevsky and L. Kozma, “Modal and Focusing Properties of Plasma Based Waveguides for X-Ray Beams,” Contributions to Plasma Physics, Vol. 38, No. 5, 1998, pp. 583-597. doi:10.1002/ctpp.2150380503

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.