Share This Article:

Simulation of Olive Kernel Gasification in a Bubbling Fluidized Bed Pilot Scale Reactor

Abstract Full-Text HTML Download Download as PDF (Size:3265KB) PP. 145-159
DOI: 10.4236/jsbs.2012.24021    8,981 Downloads   17,971 Views   Citations

ABSTRACT

The main aim of this study is to develop a comprehensive process model for biomass gasification in a pilot scale bubbling fluidized bed gasifier using the ASPEN PLUS simulator. A drawback in using ASPEN PLUS is the lack of a library model to simulate fluidized bed unit operation. However, it is possible for users to input their own models, using FORTRAN codes nested within the ASPEN PLUS input file, to simulate operation of a fluidized bed. The products of homogeneous reactions are defined by Gibbs equilibrium and reaction rate kinetics are used to determine the products of char gasification. Governing hydrodynamic equations for a bubbling bed and kinetic expressions for the char combustion were adopted from the literature. Different sets of gasification results for the operation conditions (temperature and air equivalence ratio (ER)) obtained from the our pilot-scale gasifier having a capacity of 1 kg/hr of olive kernel as feeding biomass, were used to demonstrate the validation of the model. The simulation results received from the application of the model were compared with the above experimental results and showed good agreement.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Michailos and A. Zabaniotou, "Simulation of Olive Kernel Gasification in a Bubbling Fluidized Bed Pilot Scale Reactor," Journal of Sustainable Bioenergy Systems, Vol. 2 No. 4, 2012, pp. 145-159. doi: 10.4236/jsbs.2012.24021.

References

[1] S. Hamel and W. Krumm, “Mathematical Modelling and Simulation of Bubbling Fluidised Bed Gasifiers,” Powder Technology, Vol. 120, No. 1-2, 2001, pp. 105-112. doi:10.1016/S0032-5910(01)00356-4
[2] S. Hamel and W. Krumm, “Modelling and Simulation of Bubbling Fluidized Bed Gasification Reactors,” Fuel Energy Abstracts, Vol. 43, No. 4, 2002, p. 250. doi:10.1016/S0140-6701(02)86192-6
[3] R. P. Ma, R. M. Felder and J. K. Ferrell, “Modelling a Pilot-Scale Fluidized Bed Coal Gasification Reactor,” Fuel Processing Technology, Vol. 19, No. 3, 1988, pp. 265-290. doi:10.1016/0378-3820(88)90103-8
[4] F. Chejne and J. P. Hernandez, “Modelling and Simulation of Coal Gasification Process in Fluidised Bed,” Fuel, Vol. 81, No. 13, 2002, pp. 1687-1702. doi:10.1016/S0016-2361(02)00036-4
[5] A. Sett and S. C. Bhattacharya, “Mathematical Modelling of a Fluidised-Bed Charcoal Gasifier,” Applied Energy, Vol. 30, No. 3, 1988, pp. 161-186. doi:10.1016/0306-2619(88)90043-8
[6] D. P. Ross, H. M. Yan and D. K. Zhang, “Modelling of a Laboratory-Scale Bubbling Fluidised-Bed Gasifier with Feeds of Both Char and Propane,” Fuel, Vol. 83, No. 14-15, 2004, pp. 1979-1990. doi:10.1016/j.fuel.2004.04.004
[7] L. Yu, J. Lu, X. Zhang and S. Zhang, “Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF),” Fuel, Vol. 86, No. 5-6, 2007, pp. 722-734. doi:10.1016/j.fuel.2006.09.008
[8] J. Corella and A. Sanz, “Modelling Circulating Fluidized Bed Biomass Gasifiers. A Pseudo-Rigorous Model for Stationary State,” Fuel Processing Technology, Vol. 86, No. 9, 2005, pp. 1021-1053. doi:10.1016/j.fuproc.2004.11.013
[9] A. Sanz and J. Corella, “Modelling Circulating Fluidized Bed Biomass Gasifiers. Results from a Pseudo-Rigorous 1-Dimensional Model for Stationary State,” Fuel Processing Technology, Vol. 87, No. 3, 2006, pp. 247-258. doi:10.1016/j.fuproc.2005.08.003
[10] J. Corella, J. Herguido, J. M. Toledo and J. I. Gomez-C?vicos, “Modeling Fluidized Bed Biomass Gasifiers. Part II: Gasification with Steam in a Bubbling Fluidized Bed,” Proceedings of First World Conference on Biomass for Energy and Industry, Sevilla, Vol. 2, 2001, pp. 1971-1975.
[11] M. L. De Souza-Santos, “Comprehensive Modelling and Simulation of Fluidized Bed Boilers and Gasifiers,” Fuel, Vol. 68, No. 12, 1989, pp. 1507-1521. doi:10.1016/0016-2361(89)90288-3
[12] H. Jiang and R. V. Morey, “A Numerical Model of a Fluidized Bed Biomass Gasifier,” Biomass and Bioenergy, Vol. 3, No. 6, 1992, pp. 431-447. doi:10.1016/0961-9534(92)90039-S
[13] J. F. Haggerty and A. H. Pulsifer, “Modelling Coal Char Gasification in a Fluidized Bed,” Fuel, Vol. 51, No. 4, 1972, pp. 304-307. doi:10.1016/0016-2361(72)90008-7
[14] F. Marias, J. R. Puiggali and G. Flamant, “Modelling for Simulation of Fluidized Bed Incineration Process,” American Institute of Chemical Engineers Journal, Vol. 47, No. 6, 2001, pp. 1438-1460. doi:10.1002/aic.690470620
[15] F. G. van den Aarsen, A. A. C. M. Beenackers, W. P. M. van Swaaij, “Modelling of a Fluidized Bed wood Gasifier,” In: K. Ostergaard and A. Serensen, Eds., Fluidization V, Proceedings of the 5th Engineering Foundation, Engineering Foundation, New York, 1986.
[16] V. I. Mukosei, L. I. Kheifets and R. V. Dzhagatspanyan, “The Mathematical Simulation of a Fluidised-Bed Reactor,” Inzhenerno-Fizicheskii Zhournal, Vol. 12, No. 4, 1967, pp. 508-514.
[17] Y. He and V. Rudolph, “Gas-Solids Flow in the Riser of a Circulating Fluidized Bed,” Chemical Engineering Science, Vol. 50, No. 21, 1995, pp. 3443-3453. doi:10.1016/0009-2509(95)00170-A
[18] K. D. Panopoulos, L. E. Fryda, J. Karl, S. Poulou and E. Kakaras, “High Temperature Solid Oxide Fuel Cell Integrated with Novel Allothermal Biomass Gasification Part I: Modelling and Feasibility Study,” Journal of Power Sources, Vol. 159, No. 1, 2006, pp. 570-585. doi:10.1016/j.jpowsour.2005.12.024
[19] E. V. Samuilov, M. F. Faminskaya and E. S. Golovina, “Model and Calculation of the Gasification of a Single Carbon Particle,” Combustion, Explosion Shock Waves, Vol. 40, No. 1, 2004, pp. 77-84. doi:10.1023/B:CESW.0000013670.94694.38
[20] N. G. Deen, M. V. S. Annaland, M. A. Van der Hoef and J. A. M. Kuipers, “Review of Discrete Particle Modeling of Fluidized Beds,” Chemical Engineering Science, Vol. 62, No. 1-2, 2007, pp. 28-44. doi:10.1016/j.ces.2006.08.014
[21] R. A. Kundsen, T. Bailey and L. A. Fabiano, “Experience with ASPEN While Simulating a New Methanol Plant,” In: R. S. H. Mah and G. V. Reklaitis, Eds., Selected topics on computer-aided process design and analysis, American Institute of Chemical Engineers Symposium Series No. 214, 1982.
[22] K. T. Schwint, “Great Plains ASPEN Model Development, Methanol Synthesis Flowsheet. Final Topical Report,” National Technical Information Service, USA, 1985.
[23] R. E. Barker, J. M. Begovich, J. H. Clinton and P. J. Johnson, “ASPEN Modelling of the Tristate Indirect Lique Faction Process,” USA Oak Ridge National Laboratory, Oak Ridge, 1983.
[24] J. N. Phillips, M. R. Erbes and R. H. Eustis, “Study of the Off-Design Performance of Integrated Coal Gasification,” Proceedings Winter annual meeting of the American Society of Mechanical Engineers, Anaheim, 7-12 December 1986.
[25] P. L. Douglas and B. E. Young, “Modelling and Simulation of an AFBC Steam Heating Plant Using ASPEN/SP,” Fuel, Vol. 70, No. 2, 1990, pp. 145-154. doi:10.1016/0016-2361(91)90145-Z
[26] H. M. Yan and V. Rudolph, “Modeling a Compartmented Fluidized Bed Coal Gasifier Process Using ASPEN PLUS,” Chemical Engineering Communication, Vol. 183, No. 1, 2000, pp. 1-38. doi:10.1080/00986440008960499
[27] L. Backham, E. Croiset and P. L. Douglas, “Simulation of a Coal Hydrogasification Process with Integrated CO2 Capture,” Greenhouse Gas Control Technologies 7, Vol. 2, No. 2, 2005, pp. 1941-1945.
[28] H. G. Lee, K. M. Chung, C. Kim, S. H. Han and H. T. Kim, “Coal Gasification Simulation Using ASPEN PLUS,” US-Korea Joint Workshop on Coal Utilization Technology, Pittsburgh, 1992, pp. 447-474.
[29] K. G. Mansaray, A. M. Al-Taweel, A. E. Ghaly, F. Hamdullahpur and V. I. Ugursal, “Mathematical Modelling of a Fluidized Bed Rice Husk Gasifier,” Energy Sources, Vol. 22, No. 1, 2000, pp. 83-98. doi:10.1080/00908310050014243
[30] P. Basu, “Combustion and Gasification in Fluidized Beds,” Taylor Francis, Halifax, 2006.
[31] Y. Cao, Y. Wang, J. T. Riley and W. P. Pan, “A Novel Biomass Air Gasification Process of Producing Tar-Free Higher Heating Value Fuel Gas,” Fuel Processing Technology, Vol. 87, No. 4, 2006, pp. 343-353. doi:10.1016/j.fuproc.2005.10.003
[32] P. M. Lv, Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen and J. X. Zhu, “An Experimental Study on Biomass Air-Steam Gasification in a Fluidized Bed,” Bioresource Technology, Vol. 95, No. 1, 2004, pp. 95-101. doi:10.1016/j.biortech.2004.02.003
[33] A. Zabaniotou, V. Skoulou, G. Koufodimos and Z. Samaras, “Conceptual Desing and Preliminary Hydrodynamic Study of an Agro Biomass Bench Scale Gasification Fluidized Bed Reactor,” International Journal of Chemical Reactor Engineering, Vol. 6, No. 1, 2008, pp. 1-17. doi:10.2202/1542-6580.1639
[34] T. Nordgreen, T. Liliedahl and K. Sj?str?m, “Metallic Iron as a Tar Breakdown Catalyst Related to Atmospheric, Fluidised Bed Gasification of Biomass,” Fuel, Vol. 85, No. 5-6, 2006, pp. 689-694. doi:10.1016/j.fuel.2005.08.026
[35] P. Ollero, A. Serrera, R. Arjona and S. Alcantarilla, “The CO2 Gasification Kinetics of Olive Residue,” Biomass and Bioenergy, Vol. 24, No. 2, 2003, pp. 151-161. doi:10.1016/S0961-9534(02)00091-0

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.