The Gain Distribution According to the Theoretical Structure and Decay Dynamics of Sodium like Cu

Abstract

Level structure, oscillator strengths, transition probabilities and radiative life times are evaluated for 1s2 2s2 2p63l, 4l, 5l (l = 0, 1, 2, 3, 4) states in sodium like Cu18+. The calculations are carried out using COWAN code. The calculations were made are compared with other results in literature where a good agreement is found, we also report on some unpublished energy values and oscillator strengths. Our results are used in the calculation of reduced population of 21 fine structure levels over a wide rang of electron density values (1018 to 1020) and at various electron plasma temperature. For those transitions with positive population inversion factor, the gain coefficients are evaluated and plotted against the electron density.

Share and Cite:

W. Abdelaziz, M. Ahmed, A. Khalil, M. Ahmed and T. El-Sherbini, "The Gain Distribution According to the Theoretical Structure and Decay Dynamics of Sodium like Cu," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 358-366. doi: 10.4236/opj.2012.24045.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. C. Elton, “X-Ray Lasers,” Academic Press, New York, 1990, pp. 132-149.
[2] J. E. Trebes, S. B. Brown, et al., “Demonstration of X-Ray Holography and X-Ray Laser,” Science, Vol. 238, No. 4826, 1987, pp. 517-519. doi:10.1126/science.238.4826.517
[3] L. B. Da Silva, J. E. Trebes, et al., “X-Ray Laser Microscopy of Rat Sperm Nuclei,” Science, Vol. 258, No. 5080, 1992, pp. 269-271. doi:10.1126/science.1411525
[4] D. Ress, L. B. Da Silva, et al., “Measurement of Laser-Plasma Electron Density with a Soft X-Ray Laser Deflectometer,” Science, Vol. 265, No. 5171, 1994, pp. 514-517. doi:10.1126/science.265.5171.514
[5] R. Cauble, L. B. Da Silva, et al., “Simultaneous Measurement of Local Gain and Electron Density in X-Ray Lasers,” Science, Vol. 273, No. 5278, 1996, pp. 1093-1096. doi:10.1126/science.273.5278.1093
[6] D. H. Kalantar, M. H. Key, L. B. Da Silva, et al., “Measurement of 0. 35 Microm Laser Imprint in a Thin Si Foil Using an X-Ray Laser Backlighter,” Physical Review Letters, Vol. 76, No. 19, 1996, pp. 3574-3577. doi:10.1103/PhysRevLett.76.3574
[7] C. F. Fischer, “A General Multi-Configuration HartreeFock Program,” Computer Physics Communications, Vol. 14, No. 1-2, 1978, pp. 145-153.
[8] W. Siegel, J. Migdalek and Y. K. Kim, “Dirac-Fock Oscillator Strengths for E1 Transitions in the Sodium Isoelectronic Sequence (Na I-Ca X),” Atomic Data and Nuclear Data Tables, Vol. 68, No. 2, 1998, pp. 303-322.
[9] D. A. Verner, P. D Barthel and D. Tyther, “Atomic Data for Absorption Lines from the Ground Level at Wavelengths Greater than 228 A,” Astronomy and Astrophysics Supplement Series, Vol. 108, No. 2, 1994, pp. 287-340.
[10] J. R. Fuhr and W. L. Wiese, “Atomic Transition Probabilities”, In: D. R. Lide, Ed., CRC Handbook of Chemistry and Physics, 72th Edition, CRC Press, Boca Raton, 1991.
[11] W. L. Wiese, M. W. Smith and B. M. Miles, “Atomic Transition Probabilities, (Na through Ca-A Critical Data Compilation),” National Standard Reference Data Series (US), NSRDS-NBS 22, Vol. II, 1969.
[12] G. A. Martin, J. R. Fuhr and W. L. Wiese, “Atomic Transition Probabilities-Scandium: Through Manganese,” Journal of Physical and Chemical Reference Data, Vol. 17, Suppl. 3, 1988.
[13] J. R. Fuhr, G. A. Martin and W. L. Wiese, “Atomic Transition Probabilities-Iron: Through Manganese,” Journal of Physical and Chemical Reference Data, Vol. 17, Suppl. 4, 1988.
[14] R. M. Lowe and E. Biemont, “Lifetime Measurements for the 4p 2Po and 5p 3Po Levels and Calculation of Transition Probabilities in Na I,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 27, No. 11, 1994, pp. 2161-2167. doi:10.1088/0953-4075/27/11/012
[15] D. R. Hartree and E. E. Salpeter, “Quantum Mechanics of Oneand Two-Electron Atoms,” Springer-Verlage, Berlin and New York, 1657.
[16] I. Sobelman, “Atomic Spectra and Radiative Transition,” Springer, Berlin, 1979.
[17] R. D. Cowan, “The Theory of Atomic Structure and Spectra,” University of California Press, Berkeley, 1981.
[18] U. Feldman, A. K. Bhatia, S. Suckewer, U. Feldman, A. K. Bhatia and S. Suckewer, “Short Wavelength Laser Calculations for Electron Pumping in Neon-Like Krypton (Kr XXVII),” Journal of Applied Physics, Vol. 54, No. 5, 1983, pp. 2188-2197. doi:10.1063/1.332371
[19] U. Feldman, J. F. Seely and G. A. Doschek, “3s-3p Laser Gain and X-Ray Line Ratios for the Carbon Isoelectronic Sequence,” Journal of Applied Physics, Vol. 59, No. 12, 1986, pp. 3953-3957. doi:10.1063/1.336695
[20] U. Feldman, G. A. Doschek, J. F. Seely and A. K. Bhatia, “Short Wavelength Laser Calculations for Electron Pumping in Be I and B I Isoelectronic Sequences (18 ≤ Z ≤ 36),” Journal of Applied Physics, Vol. 58, No. 8, 1985, pp. 2909-2915. doi:10.1063/1.335838
[21] U. Feldman, J. F. Seely and A. K. Bhatia, “Scaling of Collisionally Pumped 3s-3p Lasers in the Neon Isoelectronic Sequence,” Journal of Applied Physics, Vol. 56, No. 9, 1984, pp. 2475-2478. doi:10.1063/1.334308
[22] G. Chapline and L. Wood, “X-Ray Lasers,” Physics Today, 28, No. 6, 1975, p. 40. doi:10.1063/1.3069004
[23] A. V. Vinogradov and V. N. Shlyaptsev, “Calculations of Population Inversion Due to Transitions in Multiply Charged Neon-Like Ions in the 200 2000 ? Range,” Soviet Journal of Quantum Electronics, Vol. 10, No. 6, 1980, p. 754. doi:10.1070/QE1980v010n06ABEH010287
[24] U. Feldman, J. F. Seely and G. A. Doschek, “Short Wavelength Laser Calculations in the Be I, B I and C I Isoelectronic Sequences,” Journal de Physique Archives, Vol. 47, No. C6, 1986, pp. 187-202.
[25] M. J. Seaton, “Atomic Data for Opacity Calculations. I. General Description,” Journal of Physics B: Atomic and Molecular Physics, Vol. 20, No. 23, 1987, p. 6363.
[26] W. O Younis, S. H Allam and Th. M. El-Sherbini, “Fine-Structure Calculations of Energy Levels, Oscillator Strengths, and Transition Probabilities for Sodium-Like Ions (Co XVII-Kr XXVI),” Atomic Data and Nuclear Tables, Vol. 92, No. 2, 2005, pp. 187-205.
[27] National Institute of Standards and Technology, Physical Reference Data, Atomic Spectra Database, Version 5, Vol. 11, 2009, pp. 3954-3958. http://www.nist.gov/pml/data/asd.cfm
[28] S. H. Allam, “CRMO Computer Code, Private Communication,” 2003.
[29] U. Feldman, J. F. Seely and A. K. Bhatia, “Density sENSITIVE X-Ray Line Ratios in the Bei, Bi, and Nei Isoelectronic Sequences,” Journal of Applied Physics, Vol. 58, No. 11, 1984, pp. 3954-3958. doi:10.1063/1.335569

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.