Share This Article:

Super-Resolution with Multiselective Contourlets

Abstract Full-Text HTML Download Download as PDF (Size:911KB) PP. 302-311
DOI: 10.4236/ajcm.2012.24041    5,604 Downloads   14,148 Views   Citations

ABSTRACT

We introduce a new approach to image super-resolution. The idea is to use a simple wavelet-based linear interpolation scheme as our initial estimate of high-resolution image; and to intensify geometric structure in initial estimation with an iterative projection process based on hard-thresholding scheme in a new angular multiselectivity domain. This new domain is defined by combining of laplacian pyramid and angular multiselectivity decomposition, the result is multiselective contourlets which can capture and restore adaptively and slightly better geometric structure of image. The experimental results demonstrate the effectiveness of the proposed approach.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Aallaoui and A. Gourch, "Super-Resolution with Multiselective Contourlets," American Journal of Computational Mathematics, Vol. 2 No. 4, 2012, pp. 302-311. doi: 10.4236/ajcm.2012.24041.

References

[1] P. Milanfar, “Super-Resolution Imaging,” CRC Press, 2011.
[2] D. Capel, “Image mosaicing and Super-Resolution,” Springer, Berlin, 2004. doi:10.1007/978-0-85729-384-8
[3] K. Katsaggelos, R. Molina and J. Mateos, “Super Resolution of Images and Video,” Morgan and Claypool Publishers, San Rafael, 2007.
[4] S. Borman and R. L. Stevenson, “Super-Resolution from Image Sequences,” Proceedings of the 1998 Midwest Symposium on Circuits and Systems, Vol. 2, 1998, pp. 374-378.
[5] S. Baker and T. Kanade, “Limits on Super-Resolution and How to Break Them,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, 2002, pp. 1167-1183. doi:10.1109/TPAMI.2002.1033210
[6] N. K. Bose S. P. Kim and H. M. Valenzuela, “Ecursive Reconstruction of High Resolution Image from Noisy Undersampled Multiframes,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 38, 1990, pp. 1013-1027.
[7] R. Y. Tsai and T. S. Huang, “Multipleframe Image Restoration and Registration,” Advances in Computer Vision and Image Processing, Greenwich, JAI Press Inc., 1984, pp. 317-339.
[8] E. Kaltenbacher and R. C. Hardie, “High-Resolution Infrared Image Reconstruction Using Multiple Low Resolution Aliased Frames,” Proceedings of the IEEE National Aerospace Electronics Conference, Vol. 2, 1996, pp. 702- 709.
[9] A. K. Katsaggelos, B. C. Tom and N. P. Galatsanos, “Reconstruction of a High Resolution Image from Registration and Restoration of Low Resolution Images,” Proceedings of the IEEE International Conference on Image Processing, Vol. 3, 1994, pp. 553-557.
[10] S. Chaudhuri and M. V. Joshi, “Motion-Free Super-Resolution, MIT Press, Cambridge, 2005.
[11] R. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29, No. 6, 1981, pp. 1153-1160. doi:10.1109/TASSP.1981.1163711
[12] M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing Magazine, Vol. 16, No. 6, 1999, pp. 22-38. doi:10.1109/79.799930
[13] S. Carrato, G. Ramponi and S. Marsi, “A Simple Edge-Sensitive Image Interpolation Filter,” Proceedings of IEEE International Conference on Image Processing, Lausanne, 16-19 September 1996, pp. 711-714.
[14] T. Lehmann, C. Gonner and K. Spitzer, “Survey: Interpolations Methods in Medical Image Processing,” IEEE Trans. on Medical Imaging, Vol. 18, No. 11, 1999, pp. 1049-1075. doi:10.1109/42.816070
[15] P. Thevenaz, T. Blu and M. Unser, “Medical Images Application,” IEEE Transactions on Medical Imaging, Vol. 19, 2000, pp. 739-758.
[16] X. Zhang and X. Wu, “Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-Decision Estimation,” IEEE Transactions on Image Processing, Vol. 17, No. 6, 2008, pp. 887-896. doi:10.1109/TIP.2008.924279
[17] S. Mallat and G. Yu, “Super-Resolution with Sparse Mixing Estimators,” IEEE Transactions on Image Processing, Vol. 19, No. 11, 2010, pp. 518-531. doi:10.1109/TIP.2010.2049927
[18] N. Mueller, Y. Lu and M. N. Do, “Image Interpolation Using Multiscale Geometric Representations,” Processing of SPIE Computational Imaging, Vol. 6498, San Jose, 28 January 2007.
[19] M. N. Do and M. Vetterli, “The Contourlet Transform: An Efficient Directional Multiresolution Image Representation,” IEEE Transactions Image on Processing, Vol. 14, No. 12, 2005, pp. 2091-2106. doi:10.1109/TIP.2005.859376
[20] A. L. Cunha, J. Zhou and M. N. Do, “The Nonsubsampled Contourlet Transform: Theory, Design, and Applications,” IEEE Transactions Image on Processing, Vol. 15, No. 10, 2006, pp. 3089-3101. doi:10.1109/TIP.2006.877507
[21] J. P. Antoine, R. Murenzi, P. Vandergheynst and S. T. Ali, “Two Dimensional Wavelets and Their Relatives,” Cambridge University Press, Cambridge, 2004. doi:10.1017/CBO9780511543395
[22] P. J. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Transactions on Communications, Vol. 31, No. 4, 1983, pp. 532-540. doi:10.1109/TCOM.1983.1095851
[23] M. Vetterli and J. Kovacevic, “Wavelets and Subband Coding,” Prentice Hall, Upper Saddle River, 1995.
[24] S. Mallat, “A Wavelet Tour of Signal Processing,” 2nd Edition, Academic Press, Waltham, 1999.
[25] M. N. Do and M. Vetterli, “Framing Pyramids,” IEEE Transactions on Signal Processing, Vol. 51, No. 9, 2003, pp. 2329-2342.
[26] J. P. Antoine, R. Murenzi and P. Vandergheynst, “Directional Wavelets Revisited: Cauchy Wavelets and Symmetry Etection in Patterns,” Applied and Computational Harmonic Analysis, Vol. 6, No. 3, 1999, pp. 314-345. doi:10.1006/acha.1998.0255
[27] M. ElAallaoui, A. ElBouhtouri and A. Ayadi, “Adaptive Selectivity Representation: Design, and Applications,” International Journal of Wavelets, Multiresolution and Information Processing, Vol. 7, No. 1, 2009, pp. 89-113. doi:10.1142/S0219691309002829
[28] O. G. Guleryuz, “Nonlinear Approximation Based Image Recovery Using Adaptive Sparse Reconstructions and Iterated Denoising: Part I—Theory,” IEEE Transactions on Image Processing, Vol. 15, No. 3, 2006, pp. 539-554. doi:10.1109/TIP.2005.863057
[29] T. Blu A. Muoz and M. Unser. Least-squares image resizing using finite differences. IEEE Transactions on Image Processing, Vol. 10, No. 9, 2001, pp. 1365-1378. doi:10.1109/83.941860

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.