Scientific Research

An Academic Publisher

Propagation of Waves in a Two-Temperature Rotating Thermoelastic Solid Half-Space without Energy Dissipation ()

**Author(s)**Leave a comment

The present paper is concerned with the propagation of plane waves in an isotropic two-temperature generalized thermoelastic solid half-space in context of Green and Naghdi theory of type II (without energy dissipation). The governing equations in

*x*–*z*plane are solved to show the existence of three coupled plane waves. The reflection of plane waves from a thermally insulated free surface is considered to obtain the relations between the reflection coefficients. A particular example of the half-space is chosen for numerical computations of the speeds and reflection coefficients of plane waves. Effects of two-temperature and rotation parameters on the speeds and the reflection coefficients of plane waves are shown graphically.Cite this paper

B. Singh and K. Bala, "Propagation of Waves in a Two-Temperature Rotating Thermoelastic Solid Half-Space without Energy Dissipation,"

*Applied Mathematics*, Vol. 3 No. 12, 2012, pp. 1903-1909. doi: 10.4236/am.2012.312261.Conflicts of Interest

The authors declare no conflicts of interest.

[1] | H. Lord and Y. Shulman, “A Generalised Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, 1967, pp. 299-309. doi:10.1016/0022-5096(67)90024-5 |

[2] | A. E. Green and K. A. Lindsay, “Thermoelasticity,” Journal of Elasticity, Vol. 2, No. 1, 1972, pp. 1-7. doi:10.1007/BF00045689 |

[3] | J. Ignaczak and M. Ostoja-Starzewski, “Thermoelasticity with Finite Wave Speeds,” Oxford University Press, Oxford, 2009. |

[4] | A. E. Green and P. M. Naghdi, “Thermoelasticity without Energy Dissipation,” Journal of Elasticity, Vol. 31, No. 3, 1993, pp. 189-208. doi:10.1007/BF00044969 |

[5] | R. B. Hetnarski and J. Ignaczak, “Generalized Thermoelasticity,” Journal of Thermal Stresses, Vol. 22, No. 4, 1999, pp. 451-476. doi:10.1080/014957399280832 |

[6] | H. Deresiewicz, “Effect of Boundaries on Waves in a Thermo-Elastic Solid: Reflection of Plane Waves from Plane Boundary,” Journal of the Mechanics and Physics of Solids, Vol. 8, No. 3, 1960, pp. 164-172. doi:10.1016/0022-5096(60)90035-1 |

[7] | A. N. Sinha, and S. B. Sinha, “Reflection of Thermoelastic Waves at a Solid Half Space with Thermal Relaxation,” Journal of Physics of the Earth, Vol. 22, No. 2, 1974, pp. 237-244. doi:10.4294/jpe1952.22.237 |

[8] | S. B. Sinha and K. A. Elsibai, “Reflection of Thermoelastic Waves at a Solid Half-Space with Two Thermal Relaxation Times,” Journal of Thermal Stresses, Vol. 19, No. 8, 1996, pp. 763-777. doi:10.1080/01495739608946205 |

[9] | S. B. Sinha and K. A. Elsibai, “Reflection and Refraction of Thermoelastic Waves at an Interface of two Semi-Infinite Media with Two Thermal Relaxation Times,” Journal of Thermal Stresses, Vol. 20, No. 2, 1997, pp. 129-146. doi:10.1080/01495739708956095 |

[10] | J. N. Sharma, V. Kumar and D. Chand, “Reflection of Generalized Thermoelastic Waves from the Boundary of a Half-Space,” Journal of Thermal Stresses, Vol. 26, No. 10, 2003, pp. 925-942. doi:10.1080/01495730306342 |

[11] | M. I. A. Othman and Y. Song, “Reflection of Plane Waves from an Elastic Solid Half-Space under Hydrostatic Initial Stress without Energy Dissipation,” International Journal of Solids and Structures, Vol. 44, No. 17, 2007, pp. 5651-5664. doi:10.1016/j.ijsolstr.2007.01.022 |

[12] | B. Singh, “Effect of Hydrostatic Initial Stresses on Waves in a Thermoelastic Solid Half-Space,” Applied Mathematics and Computation, Vol. 198, No. 2, 2008, pp. 494 -505. doi:10.1016/j.amc.2007.08.072 |

[13] | B. Singh, “Reflection of Plane Waves at the Free Surface of a Monoclinic Thermoelastic Solid Half-Space,” European Journal of Mechanics—A/Solids, Vol. 29, No. 5, 2010, pp. 911-916. doi:10.1016/j.euromechsol.2010.05.005 |

[14] | M. E. Gurtin and W. O. Williams, “On the Clausius-Du hem Inequality,” Zeitschrift für angewandte Mathematik und Physik, Vol. 17, No. 5, 1966, pp. 626-633. doi:10.1007/BF01597243 |

[15] | M. E. Gurtin and W. O. Williams, “An Axiomatic Foun dation/or Continuum Thermodynamics,” Archive for Rational Mechanics and Analysis, Vol. 26, No. 2, 1967, pp. 83-117. doi:10.1007/BF00285676 |

[16] | P. J. Chen and M. E. Gurtin, “On a Theory of Heat Con duction Involving Two Temperatures,” Zeitschrift für angewandte Mathematik und Physik, Vol. 19, No. 4, 1968, pp. 614-627. doi:10.1007/BF01594969 |

[17] | P. J. Chen, M. E. Gurtin and W. O. Williams, “A Note on Non-Simple Heat Conduction,” Zeitschrift für angewandte Mathematik und Physik, Vol. 19, No. 6, 1968, pp. 969-970. doi:10.1007/BF01602278 |

[18] | P. J. Chen, M. E. Gurtin and W. O. Williams, “On the Thermodynamics of Non-Simple Elastic Materials with Two Temperatures,” Zeitschrift für angewandte Mathe matik und Physik, Vol. 20, No. 1, 1969, pp. 107-112. doi:10.1007/BF01591120 |

[19] | W. E. Warren and P. J. Chen, “Wave Propagation in the Two-Temperature Theory of Thermoelasticity,” Acta Mechanica, Vol. 16, No. 1-2, 1973, pp. 21-33. doi:10.1007/BF01177123 |

[20] | B. A. Boley and I. S. Tolins, “Transient Coupled Ther moplastic Boundary Value Problems in the Half-Space,” Journal of Applied Mechanics, Vol. 29, No. 4, 1962, pp. 637-646. doi:10.1115/1.3640647 |

[21] | P. Puri and P. M. Jordan, “On the Propagation of Har monic Plane Waves under the Two-Temperature Theory,” International Journal of Engineering Science, Vol. 44, No. 17, 2006, pp. 1113-1126. doi:10.1016/j.ijengsci.2006.07.002 |

[22] | R. Quintanilla and P. M. Jordan, “A Note on the Two Temperature Theory with Dual-Phase-Lag Delay: Some Exact Solutions,” Mechanics Research Communications, Vol. 36, No. 7, 2009, pp. 796-803. doi:10.1016/j.mechrescom.2009.05.002 |

[23] | H. M. Youssef, “Theory of Two-Temperature General ized Thermoelasticity,” IMA Journal of Applied Mathematics, Vol. 71, No. 3, 2006, pp. 383-390. doi:10.1093/imamat/hxh101 |

[24] | R. Kumar and S. Mukhopadhyay, “Effects of Thermal Relaxation Time on Plane Wave Propagation under Two-Temperature Thermoelasticity,” International Journal of Engineering Science, Vol. 48, No. 2, 2010, pp. 128-139. doi:10.1016/j.ijengsci.2009.07.001 |

[25] | A. Magana and R. Quintanilla, “Uniqueness and Growth of Solutions in Two-Temperature Generalized Thermoelastic Theories,” Mathematics and Mechanics of Solids, Vol. 14, No. 7, 2009, pp. 622-634. doi:10.1177/1081286507087653 |

[26] | H. M. Youssef, “Theory of Two-Temperature Thermoelasticity without Energy Dissipation,” Journal of Thermal Stresses, Vol. 34, No. 2, 2011, pp. 138-146. doi:10.1080/01495739.2010.511941 |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.