Biomarkers Expression in Cervical Cancer and High Grade Squamous Intraepithelial Lesions

Abstract

Objectives: The finding of new prognostic factors in human cervix cancer is necessary to improve present conventional treatments. The aim of the present study was to determine the expression and evaluate the prognostic value of hypoxia-inducible factor-1(HIF-1α), vascular endothelial growth factor (VEGF) and eritropoyetin receptor (EpoR) in cervix cancer stages IIA-IIB and in preinvasive high grade squamous intraepithelial lesions (HSIL) Methods: The study included 70 patients with cervix cancer, FIGO stages IIA-IIB, 28 patients with HSIL and normal cervix (n = 28). HIF-1α, VEGF and EpoR expression were analyzed in tissue samples by immunohistochemistry using commercial antibodies. Expression and overexpression of the tumor markers were quantified according to German Immunoreactive Score. Results: HIF-1α, EpoR and VEGF overexpression was detected in 30%, 37% and 51% of cancer patients respectively. Patients with HSIL showed enhanced expression only of EpoR and VEGF (39.2% and 71.4%) while VEGF was overexpressed in 21% of the specimen. No correlation was found between VEGF and EpoR with disease-free overall survival (OS), tumor recurrences or prognostic factors. Only overexpression of HIF-1 was associated with less median survival measured up to 24 months, unless it was not maintained a long time. Conclusion: Although any of the markers could be considered as independent prognostic factor for cervix cancer patients, our data showed a significant increase in their expression from the premalignant lesion up to the invasive stages of tumor progression.

Share and Cite:

O. Marcela, G. Liliana, G. Sergio, A. Ana, M. Lina, D. Diana and J. Adela, "Biomarkers Expression in Cervical Cancer and High Grade Squamous Intraepithelial Lesions," Journal of Cancer Therapy, Vol. 3 No. 6, 2012, pp. 1066-1073. doi: 10.4236/jct.2012.36139.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. H. Liyanage, C. A. Roberts and A. G. Rockall, “MRI and PET Scans for Primary Staging and Detection of Cervical Cancer Recurrence,” Women’s Health, Vol. 6, No. 2, 2010, pp. 251-267. doi:10.2217/whe.10.7
[2] D. De Dios, S. Gianni, M. Ostojich and C. Kremer, “Pautas en Oncología. Diagnóstico, Tratamiento y Seguimiento del Cáncer,” Instituto de Oncología A H Roffo, Universidad de Buenos Aires, Buenos Aires, 2010, pp. 137-143.
[3] J. Cuzick, M. Arbyn, R. Sankaranarayanan, V. Tsu, G. Ronco, M. H. Mayrand, J. Dillner and C. J. Meijer, “Overview of Human Papillomavirus-Based and Other Novel Options for Cervical Cancer Screening in Developed and Developing Countries,” Vaccine, Vol. 26, Suppl, 10, 2008, pp. K29-K41.
[4] F. Kisseljov, O. Sakharova and T. Kondratjeva, “Cellular and Molecular Biological Aspects of Cervical Intraepithelial Neoplasia,” International Review of Cell and Molecular Biology, Vol. 271, 2008, pp. 35-95. doi:10.1016/S1937-6448(08)01202-1
[5] H. Von Keyserling, T. Bergmann, M. Schuetz, U. Schiller, J. Stanke, C. Hoffmann, A. Schneider, H. Lehrach, A. Dahl and A. M. Kaufmann, “Analysis of 4 Single-Nucleotide Polymorphisms in Relation to Cervical Dysplasia and Cancer Development Using a High-Throughput Ligation-Detection Reaction Procedure,” International Journal of Gynecological Cancer, Vol. 21, No. 9, 2011, pp. 1664-1671. doi:10.1097/IGC.0b013e31822b6299
[6] A. Szalmás and J. Kónya, “Epigenetic Alterations in Cervical Carcinogenesis,” Seminars in Cancer Biology, Vol. 19, No. 3, 2009, pp. 144-152. doi:10.1016/j.semcancer.2009.02.011
[7] P. M. Das and R. Singal, “DNA Methylation and Cancer,” Journal of Clinical Oncology, Vol. 22, No. 22, 2004, pp. 4632-4642. doi:10.1200/JCO.2004.07.151
[8] K. L. Bennewith and S. Dedhar, “Targeting Hypoxic Tumour Cells to Overcome Metastasis,” BMC Cancer, Vol. 11, 2011, pp. 504-509. doi:10.1186/1471-2407-11-504
[9] Z. K. Otrock, H. A. Hatoum, A. H. Awada, R. S. Ishak and A. I. Shamseddine, “Hypoxia-Inducible Factor in Cancer Angiogenesis: Structure, Regulation and Clinical Perspectives,” Critical Reviews Oncology/Hematology, Vol. 70, No. 2, 2009, pp. 93-102. doi:10.1016/j.critrevonc.2009.01.001
[10] C. S. F. Wong, J. Sceneay, C. M. House, H. M. Halse, M. C. P. Liu, J. George, T. C. Potdevin Hunnam, B. S. Parker, I. Haviv, Z. Ronai, C. Cullinane, D. Bowtell and A. Moller, “Vascular Normalization by Loss of Siah2 Results in Increased Chemotherapeutic Efficacy,” Cancer Research, Vol. 72, No. 7, 2012, pp. 1694-1705. doi:10.1158/0008-5472.CAN-11-3310
[11] P. Vaupel, “Tumor Microenvironmental Physiology and Its Implication for Radiation Oncology,” Seminars in Radiation Oncology, Vol. 14, No. 3, 2004, pp. 198-206. doi:10.1016/j.semradonc.2004.04.008
[12] B. Bachtiary, M. Schindl, R. Potter, B. Dreier, T. H. Knocke, J. A. Hainfellner, R. Horvat and P. Birner, “Overexpression of Hypoxia-Inducible Factor-1α Indicates Diminished Response to Radiotherapy and Unfavorable Prognosis in Patients Receiving Radical Radiotherapy for Cervical Cancer,” Clinical Cancer Research, Vol. 9, No. 6, 2003, pp. 2234-2240.
[13] G. J. Hutchison, H. R Valentine, J. A. Loncaster, S. E. Davidson, R. D. Hunter, S. A. Roberts, A. L. Harris, I. J. Stratford, P. M. Price and C. M. West, “Hypoxia-Inducible Factor 1 Alpha Expression as an Intrinsic Marker of Hypoxia: Correlation with Tumor Oxygen, Pimonidazole Measurements, and Outcome in Locally Advanced Carcinoma of the Cervix,” Clinical Cancer Research, Vol. 10, 2004, pp. 8405-8412. doi:10.1158/1078-0432.CCR-03-0135
[14] P. Vaupel, “Metabolic Microenvironment of Tumor Cells: A Key Factor in Malignant Progression,” Experimental Oncology, Vol. 32, No. 3, 2010, pp. 125-127.
[15] A. Unruh, A. Ressl, H. C. Mohamed, R. S. Johnson, R. Nadrowitz, E. Richter, D. M. Katschinski and R. H. Wenger, “The Hypoxia-Inducible Factor-1 Alpha Is a Negative Factor for Tumor Therapy,” Oncogene, Vol. 22, No. 21, 2003, pp. 3213-3220. doi:10.1038/sj.onc.1206385
[16] G. L. Semenza, “Hypoxia-Inducible Factors: Mediators of Cancer Progression and Targets for Cancer Therapy,” Trends in Pharmacol Sciences, Vol. 33, No. 4, 2012, pp. 207-214. doi:10.1016/j.tips.2012.01.005
[17] P. Vaupel, “Hypoxia and Aggressive Tumor Phenotype: Implications for Therapy and Prognosis,” The Oncologis, Vol. 13, Suppl. 3, 2008, pp. 21-26. doi:10.1634/theoncologist.13-S3-21
[18] M. W. Luczak., A. Roszak, P. Pawlik, H. Kedzia, M. Lianeri and P. P. Jagodzinski, “Increased Expression of HIF-1? and Its Implication in the Hypoxia Pathway in Parimary Advanced Uterine Cervical Carcinoma,” Oncology Reports, Vol. 26, No. 5, 2011, pp. 1259-1264.
[19] M. Guppy. “The Hypoxic Core: A Possible Answer to the Cancer Paradox,” Biochemical and Biophysical Research Communications, Vol. 299, No. 4, 2002, pp. 676-680. doi:10.1016/S0006-291X(02)02710-9
[20] W.Y Lee, S.C Huang, K.F Hsu, C.C Tzeng and W. Shen, “Roles for hypoxia-regulated genes during cervical carcinogenesis: somatic evolution during the hypoxia-glycolysis-acidosis sequence,” Gynecologic Oncology, Vol 108, No. 2, 2008, pp. 377-384. doi:10.1016/j.ygyno.2007.10.034
[21] M. Hockel and P. Vaupel, “Oxygenation of Cervix Cancers: Impact of Clinical and Pathological Parameters,” Advances in Experimental Medicine and Biology, Vol. 510, 2003, pp. 31-35. doi:10.1007/978-1-4615-0205-0_6
[22] C. Leo, L. C. Horn, J. Einenkel, B. Hentschel and M. Hockel, “Tumor Hypoxia and Expression of c-Met in Cervical Cancer,” Gynecologic Oncology, Vol. 104, No. 1, 2007, pp. 181-185. doi:10.1016/j.ygyno.2006.07.040
[23] M. G. Noordhuis, J. J. Eijsink, F. Roossink , P. de Graeff, E. Pras, E. Schuuring, G. B. Wisman, G. H. de Bock, A. G. van der Zee, “Prognostic Cell Biological Markers in Cervical Cancer Patientes Primarily Treated with (Chemo)radiation: A Systemic Review,” International Journal of Radiation Oncology, Vol. 79, No. 2, 2011, pp. 325-334. doi:10.1016/j.ijrobp.2010.09.043
[24] D. H. Gorski, M. A. Beckett, N. T. Jaskowiak, D. P. Calvin, H. J. Mauceri, R. M. Salloum, S. Seetharam, A. Koons, D. M. Hari, D. W. Kufe and R. R. Weichselbaum, “Blockage of the Vascular Endothelial Growth Factor Stress Response Increases the Antitumor Effect of Ionizing Radiation,” Cancer Research, Vol. 59, No. 14, 1999, pp. 3374-3378.
[25] P. Gallet, B. Phulpin, J. L. Merlin, A. Leroux, P. Bravetti, H. Mecellem, N. Tran and G. Dolivet, “Long-Term Alterations of Cytokines and Growth Factors Expression in Irradiated Tissues and Relation with Histological Severity Scoring,” PLoS One, Vol. 6, 2011, Article ID: e29399. doi:10.1371/journal.pone.0029399
[26] P. Albertsson, B. Lennernas and K. Norrby, “Low-Dosage Metronomic Chemotherapy and Angiogenesis: Topoisomerase Inhibitors Irinotecan and Mitoxantrone Stimulate VEGF-A-Mediated Angiogenesis,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, Vol. 120, No. 2, 2012, pp. 147-156. doi:10.1111/j.1600-0463.2011.02830.x
[27] C. Leo, L. C., Horn, C. Rauscher , B. Hentschel, A. Liebermann, G. Hildebrandt and M. Hockel, “Expresion of Erythropoietin and Erytropoietin Receptor in Cervical Cancer and Relationship to Survival, Hypoxia and Apoptosis,” Clinical Cancer Research, Vol. 12 , No. 23, 2006, pp. 6894-6900. doi:10.1158/1078-0432.CCR-06-1285
[28] G. Acs, P. Acs, S. M. Beckwith, R. L. Pitts, E. Clements, K. Wong and A. Verma, “Erythropoietin and Erythropoietin Receptor Expression in Human Cancer,” Cancer Research, Vol. 61, 2001, pp. 3561-3565.
[29] H. H. Jo, S. H. Kim, I. A. Park, D. Kang, S. S. Han, J. W. Kim, N. H. Park, S. B. Kang and Y. S. Song, “Expression of Vascular Endothelial Growth Factor and Hypoxia Inducible Factor-1? in Cervical Neoplasia,” Annals of the NY Academy of Science, Vol. 1171, 2009, pp. 105-110. doi:10.1111/j.1749-6632.2009.04891.x
[30] K. Ruan, G. Song and G. Ouyang, “Role of Hypoxia in the Hallmarks of Human Cancer,” Journal of Cellular Biochemistry, Vol. 107, No. 6, 2009, pp. 1053-1062. doi:10.1002/jcb.22214
[31] J.-W. Kim, P. Gao and C. V. Dang, “Effects of Hypoxia on Tumor Metabolism,” Cancer Metastasis Review, Vol. 26, No. 2, 2007, pp. 291-298. doi:10.1007/s10555-007-9060-4
[32] J. Mazibrada, M. Rittà, M. Mondini, M. De Andrea, B. Azzimonti, C. Bogogna, M. Ciotti, A. Orlando, N. Surico, L. Chiusa, S. Landolfo and M. Gariglio, “Interaction between Inflammation and Angiogenesis during Different Stages of Cervical Carcinogenesis,” Gynecologic Oncology, Vol. 108, No. 1, 2008, pp. 112-120. doi:10.1016/j.ygyno.2007.08.095
[33] A. Mayer, A. Wree, M. Hockel, C. Leo, H. Pilch and P. Vaupel, “Lack of Correlation between Expression of HIF-1alpha Protein and Oxygenation Status in Identical Tissue Areas of Squamous Cell Carcinomas of the Uterine Cervix” Cancer Research, Vol. 64, No. 16, 2004, pp. 5876-5881. doi:10.1158/0008-5472.CAN-03-3566
[34] S. Chouaib, Y. Messai, S. Couve, B. Escudier, M. Hasmin and M. Z. Noman, “Hypoxia Promotes Tumor Growth in Linking Angiogenesis and Immune Escape,” Frontiers in Immunology, Vol. 3, No. 21, 2012, pp. 1-10.
[35] E. B. Rankin and A. J. Gaiaccia, “The Role of Hypoxia-Inducible Factors in Tumorigenesis,” Cell Death and Differentiation, Vol. 15, No. 4, 2008, pp. 678-685. doi:10.1038/cdd.2008.21
[36] D. Liao and R. S. Johnson, “Hypoxia: A Key Regulator of Angiogenesis in Cancer,” Cancer Metastasis Review, Vol. 26, No. 2, 2007, pp. 281-290. doi:10.1007/s10555-007-9066-y
[37] S. Landt, H. Heidecke, C. Reuter, S. Korlach, J. U. Blohmer, W. Lichtenegger, T. Heusner, F. Stoblen, M. Thill, J. Barinoff, J. Sehouli and S. Kümmel, “The Utility of an in Vitro Angiogenesis Score for Prognosis Assessment in Patients with Cervical Cancer,” Anticancer Research, Vol. 31, No. 8, 2011, pp. 2645-2649.
[38] D. M. Ma, Y. P. Xu and L. Zhu, “Expression of Vascular Endothelial Growth Factor C Correlates with a Poor Prognosis Based on Analysis of Prognostic Factors in Patients with Cervical Carcinomas,” Journal of Obstetrics Gynaecology Research, Vol. 37, No. 11, 2011, pp. 1519-1524. doi:10.1111/j.1447-0756.2011.01566.x
[39] V. M. Nagy, R. Buiga, I. Brie, N. Todor, O. Tudoran, C. Ordeanu, P. Virág, O. Tarta, M. Rus and O. Balacescu, “Expression of VEGF, VEGFR, EGFR, COX-2 and MVD in Cervical Carcinoma, in Relation with the Response to Radio-Chemotherapy,” Romanian Journal of Morphology and Embryology, Vol. 52, No. 1, 2011, pp. 53-59.
[40] P. Adimi, K. D. Steffensen, D. Schledermann, E. R. Rasmussen and A. Jakobsen, “The Prognostic Importance of EGFR and COX-2 Expression in Cervix Cancer Stages IIb-IVa,” Journal of Cancer Therapy, Vol. 2, No. 1, 2011, pp 9-15. doi:10.4236/jct.2011.21002
[41] E. Abhold, E. Rahimy, J. Wang-Rodriguez, K. J. Blair, M. A. Yu, K. T. Brumund, R. A. Weisman and W. M. Ongkeko, “Recombinant Human Erythropoietin Promotes the Acquisition of a Malignant Phenotype in Head and Neck Squamous Cell Carcinoma Cell Lines in Vitro,” BMC Research Notes, Vol. 4, 2011, p. 553. doi:10.1186/1756-0500-4-553
[42] B. Nico, T. Annese, D. Guidolin, N. Finato, E. Crivellato and D. Ribatti, “Epo Is Involved in Angiogenesis in Human Glioma,” Journal of Neurooncology, Vol. 102, No. 1, 2011, pp. 51-58. doi:10.1007/s11060-010-0294-6
[43] A. Sinclair, N. Rogers, L. Busse, I. Archibeque, W. Brown, P. Kassner, J. E. V. Watson, G. E. Arnold, K. C. Q. Nguyen, S. Powers and S. Elliott, “Erythropoietin Receptor Transcription Is neither Elevated nor Predictive of Surface Expression in Human Tumour Cells,” British Journal of Cancer, Vol. 98, No. 6, 2008, pp. 1059-1067. doi:10.1038/sj.bjc.6604220

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.