16-23S rRNA Spacer Region Polymorphism in Gangetic River Water Isolates of Salmonella
Rubi Singh, Mumtesh Kumar Saxena
DOI: 10.4236/jwarp.2010.28088   PDF    HTML   XML   4,498 Downloads   7,976 Views   Citations


Salmonella is one of the major pathogenic bacteria present in contaminated water. 16-23S rRNA spacer region has been reported to be polymorphic at serovar level in Salmonella. Salmonella isolates obtained from Ganges river water were studied for 16-23S rRNA spacer region polymorphism. Thirty three isolates belonging to eight serovars (S. Typhimurium, S. Abuja, S. Pantypridd, S. Lagos, S. Chinkual, S. Zwickau, S. Goldenberg and S. Oritamerin) were studied for the polymorphism. Out of 33 isolates, 15 different profiles were observed no serovar specific profile. Our findings indicate that 16-23S rRNA spacer region is not specific at serovar level, but can be used for differentiation of different Salmonella isolates.

Share and Cite:

R. Singh and M. Saxena, "16-23S rRNA Spacer Region Polymorphism in Gangetic River Water Isolates of Salmonella," Journal of Water Resource and Protection, Vol. 2 No. 8, 2010, pp. 756-761. doi: 10.4236/jwarp.2010.28088.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Hamner, S. C. Broadway, V. B. Mishra, A. Tripathi, R. K. Mishra, E. Pulcini., B. H. Pyle and E. F. Timothy, “Isolation of Potentially Pathogenic E. Coli O157:H7 from Ganges River,” Applied and Environmental Microbiology, Vol. 73, No. 7, April 2007, pp. 2369-2372.
[2] S. M. Faruque, R. Khan, M. Kamruzzaman, Y. Shinji, Q. S. Ahmad, T. Azim, G. B. Nair, Y. Tekeda and A. S. Da-vid, “Isolation of Shigella dysenteriae Type 1 and S. flexneri Strains from Surface Waters in Banglades: Comparative Molecular Analysis of Environmental Shi-gella Isolates Versus Clinical Strains,” Applied and En-vironmental Microbiology, Vol. 68, No. 8, August 2002, pp. 3908-3913.
[3] A. Tikko, A. K Tripathi, S. C. Verma, N. Agrawal and G. Nath, “Application of PCR Fingerprinting Techniques for Identification and Discrimination of Salmonella Isolates,” Current Science, Vol. 80, No. 8, 2001, pp. 1049-1052.
[4] J. G. Moreno, C. Moar, F. Roman, R. Perez-Maestu and J. M. Lopez de Letona “Salmonella Endocarditis Presenting a Cerebral Hemorrhage,” European Journal of Internal Medicine, Vol. 11, No. 2, April 2000, pp. 96-97.
[5] R. Hasan, F. J. Cooke, S. Nair, B. N. Harish and J. Wain, “Typhoid and Paratyphoid Fever,” The Lancet, Vol. 366, No. 9497, November 2005, pp. 1603-1604.
[6] J. R. Gezen, D. M. Towle and J. D. Kravetz, “Salmonella Typhimurium Pulmonary Infection in an Immunocompi-tent Patient,” Connecticut Medicine, Vol. 72, July 2008, pp. 139-142.
[7] K. Swe, G. Nage, M. Van and A. Hoosen, “Salmonella Typhimurium Meningitis in an Adult Patient with AIDS,” Journal of Clinical Pathology, Vol. 61, No. 1, 2008, pp. 138-139.
[8] J. Baudart, K. Lamarchand, A. Brisabois and P. Lebaron, “Diversity of Salmonella Strains Isolated from Aquatic Environment as Determined by Serotyping and Amplifi-cation of the Ribosomal DNA Spacer Regions,” Applied Environmental Microbiology, Vol. 66, No. 4, April 2000, pp. 1544-1552.
[9] N. González, J. Romero and R. T. “Espejo Comprehensive Detection of Bacterial Populations by PCR Amplification of the 16S–23S rRNA Spacer Region,” Journal of Microbiological Methods, Vol. 55, No. 1, October 2003, pp. 91-97.
[10] A. A. Fadl, A. V. Nguyen and M. I. Khan, “Analysis of Salmonella enteritidis Isolates by Arbitrarily Primed PCR,” Journal of Clinical Microbiology, Vol. 33, No. 4, 1995, pp. 987-989.
[11] M. A. Jensen, J. A. Webster and N. Straus, “Rapid Identi-fication of Bacteria on the Basis of Polymerase Chain Reaction Amplified Ribosomal DNA Spacer Polymor-phism,” Applied Environmental Microbiology, Vol. 59, No. 4, April 1993, pp. 945-957.
[12] Brosius, et al., “Gene Organization of Primary Structure of Ribosomal RNA Operon from E. Coli,” Journal of Molecular Biology, Vol. 148, No. 2, 1981, pp. 107-127.
[13] K. Wilson, “Preparation of Genomic DNA from Bacteria” Current protocols in Molecular Biology, Unit 2.4.1, Wiley, New York, 1987.
[14] W. Rabsch, H. Tsch?pea and A. J. Baumlerb, “Non-Typhoidal Salmonellosis: Emerging Problems,” Microbes and Infection, Vol. 3, No. 3, 2001, pp. 237-247.
[15] S. L. Foley, D. G. White, P. F. McDermott, R. D. Walker, B. Rhodes, P. J. Fedorka-Cray, S. Simjee and S. Zhao, “Comparison of Subtyping Methods for Differentiating Salmonella Enterica Serovar Typhimurium Isolates Ob-tained from Food Animal Sources,” Journal of Clinical Microbiology, Vol. 44, No. 10, October 2006, pp. 3569- 3577.
[16] E. J. Threlfall, “Antimicrobial Drug Resistance in Sal-monella: Problems and Perspectives in Food and Water Borne Infections,” FEMS Microbiology Reviews, Vol. 26, No. 2, January 2006, pp. 141-148.
[17] L. Ronold, Y. Anderson, J. Biritta and P. Norberg, “A Summary of Reported Food Borne Diseases Incidents in Sweden, 1992 to 1997,” Journal of Food Protection, Vol. 63, No. 10, October 2000, pp. 1315-1320.
[18] M. A. Jensen and R. J. Hubner, “Use of Homoduplex Ribosomal DNA Spacer Amplification Products and He-teroduplex Cross Hybridization Products in Identification of Salmonella Serovars,” Applied and Environmental Microbiology, Vol. 62, No. 8, August 1996, pp. 2741- 2746.
[19] V. Gürtler, “Typing of Clostridium Difficile Strains by PCR-Amplification of Variable Length 16S-23S rDNA Spacer Regions,” Journal of General Microbiology, Vol. 139, No. 12, 1993, pp. 3089-3097.
[20] C. Lagatolla, L. Dolzani, E. Tonin, A. Lavenia, M. D. Michele, T. Tommasini and C. Monti-Bragadin, “PCR Ribotyping for Characterizing Salmonella Isolates of Different Serotypes,” Journal of Clinical Microbiology, Vol. 34, No. 10, June 1996, pp. 2440-2443.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.