Sinc-Collocation Method for Solving Linear and Nonlinear System of Second-Order Boundary Value Problems

Abstract

Sinc methods are now recognized as an efficient numerical method for problems whose solutions may have singularities, or infinite domains, or boundary layers. This work deals with the sinc-collocation method for solving linear and nonlinear system of second order differential equation. The method is then tested on linear and nonlinear examples and a comparison with B-spline method is made. It is shown that the sinc-collocation method yields better results.

Share and Cite:

M. El-Gamel, "Sinc-Collocation Method for Solving Linear and Nonlinear System of Second-Order Boundary Value Problems," Applied Mathematics, Vol. 3 No. 11, 2012, pp. 1627-1633. doi: 10.4236/am.2012.311225.

Conflicts of Interest

The authors declare no conflicts of interest.

 [1] K.W. Tomantschger, “Series Solutions of Coupled Differential Equations with One Regular Singular Point,” Journal of Computational and Applied Mathematics, Vol. 140, No. 1-2, 2002, pp. 773-783. doi:10.1016/S0377-0427(01)00598-2 [2] C. Wafo Soh and F. M. Mahomed, “Linearization Criteria for a System of Second-Order Ordinary Differential Equations,” International Journal of Non-Linear Mechanics, Vol. 36, No. 4, 2001, pp. 671-677. doi:10.1016/S0020-7462(00)00032-9 [3] N. Caglar and H. Caglar, “B-Spline Method for Solving Linear System of Second-Order Boundary Value Problems,” Computers & Mathematics with Applications, Vol. 57, No. 5, 2009, pp. 757-762. doi:10.1016/j.camwa.2008.09.033 [4] S. H. Chen, J. Hu, L. Chen and C. P. Wang, “Existence Results for n-Point Boundary Value Problem of Second Order Ordinary Differential Equations,” Journal of Computational and Applied Mathematics, Vol. 180, No. 2, 2005, pp. 425-432. doi:10.1016/j.cam.2004.11.010 [5] X. Y. Cheng and C. K. Zhong, “Existence of Positive Solutions for a Second-Order Ordinary Differential System,” Journal of Mathematical Analysis and Applications, Vol. 312, No. 1, 2005, pp. 14-23. doi:10.1016/j.jmaa.2005.03.016 [6] A. Lomtatidze and L. Malaguti, “On a Two-Point Boundary Value Problem for the Second-Order Ordinary Differential Equations with Singularities,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 52, No. 6, 2003, pp. 1553-1567. doi:10.1016/S0362-546X(01)00148-1 [7] H. Thompson and C. Tisdell, “Boundary Value Problems for Systems of Difference Equations Associated with Systems of Second-Order Ordinary Differential Equations,” Applied Mathematics Letters, Vol. 15, No. 6, 2002, pp. 761-766. doi:10.1016/S0893-9659(02)00039-3 [8] H. Thompson and C. Tisdell, “The Nonexistence of Spurious Solutions to Discrete, Two-Point Boundary Value Problems,” Applied Mathematics Letters, Vol. 16, No. 1, 2003, pp. 79-84. doi:10.1016/S0893-9659(02)00147-7 [9] F. Z. Geng and M. G. Cui, “Solving a Nonlinear System of Second-Order Boundary Value Problems,” Journal of Mathematical Analysis and Applications, Vol. 327, No. 2, 2007, pp. 1167-1181. doi:10.1016/j.jmaa.2006.05.011 [10] J. F. Lu, “Variational Iteration Method for Solving a Nonlinear System of Second-Order Boundary Value Problems,” Computers & Mathematics with Applications, Vol. 54, No. 7-8, 2007, pp. 1133-1138. doi:10.1016/j.camwa.2006.12.060 [11] A. Bataineh, M. S. M. Noorani and I. Hashim, “Modified Homotopy Analysis Method for Solving Systems of Second-Order BVPs,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, 2009, pp. 430-442. doi:10.1016/j.cnsns.2007.09.012 [12] M. Dehghan and A. Saadatmandi, “The Numerical Solution of a Nonlinear System of Second-Order Boundary Value Problems Using the Sinc-Collocation Method,” Mathematical and Computer Modelling, Vol. 46, No. 11-12, 2007, pp. 1434-1441. doi:10.1016/j.mcm.2007.02.002 [13] B. Bialecki, “Sinc-Collocation Methods for Two-Point Boundary Value Problems,” IMA Journal of Numerical Analysis, Vol. 11, No. 3, 1991, pp. 357-375. doi:10.1093/imanum/11.3.357 [14] M. El-Gamel and A. I. Zayed, “Sinc-Galerkin Method for Solving Nonlinear Boundary-Value Problems,” Computers & Mathematics with Applications, Vol. 48, No. 9, 2004, pp. 1285-1298. doi:10.1016/j.camwa.2004.10.021 [15] M. El-Gamel, J. Cannon and A. Zayed, “Sinc-Galerkin Method for Solving Linear Sixth Order Boundary-Value Problems,” Mathematics of Computation, Vol. 73, No. 247, 2004, pp. 1325-1343. [16] M. El-Gamel, S. H. Behiry and H. Hashish, “Numerical Method for the Solution of Special Nonlinear FourthOrder Boundary Value Problems,” Applied Mathematics and Computation, Vol. 145, No. 2-3, 2003, pp. 717-734. doi:10.1016/S0096-3003(03)00269-8 [17] M. El-Gamel and J. Cannon, “On the Solution of Second Order Singularly-Perturbed Boundary Value Problem by the Sinc-Galerkin Method,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol. 56, No. 1, 2005, pp. 45-58. doi:10.1007/s00033-004-3002-6 [18] A. Mohsen and M. El-Gamel, “A Sinc-Collocation Method for the Linear Fredholm Integro-Differential Equations,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol. 58, No. 3, 2007, pp. 380-390. doi:10.1007/s00033-006-5124-5 [19] A. Mohsen and M. El-Gamel, “On the Galerkin and Collocation Methods for Two-Point Boundary Value Problems Using Sinc Bases,” Computers & Mathematics with Applications, Vol. 56, No. 4, 2008, pp. 930-941. doi:10.1016/j.camwa.2008.01.023 [20] A. Mohsen and M. El-Gamel, “On the Numerical Solution of Linear and Nonlinear Volterra Integral and IntegroDifferential Equations,” Applied Mathematics and Computation, Vol. 217, No. 7, 2010, pp. 3330-3337. doi:10.1016/j.amc.2010.08.065 [21] R. Smith, G. Bogar, K. Bowers and J. Lund, “The SincGalerkin Method for Fourth-Order Differential Equations,” SIAM Journal on Numerical Analysis, Vol. 28, No. 3, 1991, pp. 760-788. doi:10.1137/0728041 [22] G. Y. Yin, “Sinc-Collocation Method with Orthogonalization for Singular Poisson-Like Problem,” Mathematics of Computation, Vol. 62, No. 205, 1994, pp. 21-40. doi:10.1090/S0025-5718-1994-1203738-7 [23] J. Lund and K. L. Bowers, “Sinc Methods for Quadrature and Differential Equations,” Society for Industry and Applied Mathematics (SIAM), Philadelphia, 1992. doi:10.1137/1.9781611971637 [24] F. Stenger, “Numerical Methods Based on Sinc and Analytic Functions,” Springer, New York, 1993. doi:10.1007/978-1-4612-2706-9