An Interactive Fuzzy Satisficing Method for Multiobjective Stochastic Integer Programming with Simple Recourse


This paper considers multiobjective integer programming problems involving random variables in constraints. Using the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after determineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by updating the reference membership levels of the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.

Share and Cite:

M. Sakawa and T. Matsui, "An Interactive Fuzzy Satisficing Method for Multiobjective Stochastic Integer Programming with Simple Recourse," Applied Mathematics, Vol. 3 No. 10A, 2012, pp. 1245-1251. doi: 10.4236/am.2012.330180.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. R. Birge and F. Louveaux, “Introduction to Stochastic Programming,” Springer, London, 1997.
[2] P. Kall, “Stochastic Linear Programming,” SpringerVerlag, Berlin, 1976. doi:10.1007/978-3-642-66252-2
[3] P. Kall and J. Mayer, “Stochastic Linear Programming Models, Theory, and Computation,” Springer, New York, 2005.
[4] I. M. Stancu-Minasian, “Stochastic Programming with Multiple Objective Functions,” D. Reidel Publishing Company, Dordrecht, 1984.
[5] I. M. Stancu-Minasian, “Overview of Different Approaches for Solving Stochastic Programming Problems with Multiple Objective Functions,” In: R. Slowinski and J. Teghem, Eds., Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Kluwer Academic Publishers, Dordrecht/Boston/ London, 1990, pp. 71-101. doi:10.1007/978-94-009-2111-5_5
[6] G. B. Dantzig, “Linear Programming under Uncertainty,” Management Science,Vol. 1, No. 3-4, 1955, pp. 197-206. doi:10.1287/mnsc.1.3-4.197
[7] A. Charnes and W. W. Cooper, “Chance Constrained Programming,” Management Science, Vol. 6, No. 1, 1959, pp. 73-79. doi:10.1287/mnsc.6.1.73
[8] Y. J. Lai and C. L. Hwang, “Fuzzy Mathematical Programming,” Springer-Verlag, Berlin, 1992. doi:10.1007/978-3-642-48753-8
[9] M. Sakawa, “Fuzzy Sets and Interactive Multiobjective Optimization,” Plenum Press, New York, 1993.
[10] M. Sakawa, “Large Scale Interactive Fuzzy Multiobjective Programming,” Physica-Verlag, Heidelberg, 2000. doi:10.1007/978-3-7908-1851-2
[11] M. Sakawa, “Genetic Algorithms and Fuzzy Multiobjective Optimization,” Kluwer Academic Publishers, Boston, 2001. doi:10.1007/978-1-4615-1519-7
[12] H.-J. Zimmermann, “Fuzzy Sets, Decision-Making and Expert Systems,” Kluwer Academic Publishers, Boston, 1987. doi:10.1007/978-94-009-3249-4
[13] M. Sakawa and H. Yano, “Interactive Fuzzy Satisficing Method Using Augumented Minimax Problems and Its Application to Environmental Systems,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 15, No. 6, 1985, pp.720-729. doi:10.1109/TSMC.1985.6313455
[14] M. Sakawa and K. Kato, “Interactive Fuzzy MultiObjective Stochastic Linear Programming,” In: C. Kahraman, Ed., Fuzzy Multi-Criteria Decision Making— Theory and Applications with Recent Developments, Springer, New York, 2008, pp. 375-408.
[15] M. Sakawa, K. Kato and I. Nishizaki, “An Interactive Fuzzy Satisficing Method for Multiobjective Stochastic Linear Programming Problems through an Expectation Model,” European Journal of Operational Research, Vol. 145, No. 3, 2003, pp. 665-672. doi:10.1016/S0377-2217(02)00150-9
[16] M. Sakawa and K. Kato, “An Interactive Fuzzy Satisficing Method for Multiobjective Stochastic Linear Programming Problems Using Chance Constrained Conditions,” Journal of Multi-Criteria Decision Analysis, Vol. 11, No. 3, 2002, pp. 125-137. doi:10.1002/mcda.322
[17] M. Sakawa, K. Kato and H. Katagiri, “An Interactive Fuzzy Satisficing Method for Multiobjective Linear Programming Problems with Random Variable Coefficients through a Probability Maximization Model,” Fuzzy Sets and Systems, Vol. 146, No. 2, 2004, pp. 205-220. doi:10.1016/j.fss.2004.04.003
[18] K. Frauendorfer, “Stochastic Two-Stage Programming,” Springer-Verlag, Berlin/New York, 1992. doi:10.1007/978-3-642-95696-6
[19] P. Olsen, “Multistage Stochastic Programming with Recourse: The Equivalent Deterministic Problem,” SIAM Journal on Control and Optimization, Vol. 14, No. 3, 1976, pp. 495-517. doi:10.1137/0314033
[20] D. W. Walkup and R. J. B. Wets, “Stochastic Programming with Recourse,” SIAM Journal on Applied Mathematics, Vol. 15, No. 5, 1967, pp. 1299-1314. doi:10.1137/0115113
[21] R. Wets, “Stochastic Programs with Fixed Recourse: The Equivalent Deterministic Program,” SIAM Review, Vol. 16, No. 3, 1974, pp. 309-339. doi:10.1137/1016053
[22] S. Koziel and Z. Michalewicz, “Evolutionary Algorithms, Homomorphous Mapping, and Constrained Parameter Optimization,” Evolutionary Computation, Vol. 7, No. 1, 1999, pp. 19-44. doi:10.1162/evco.1999.7.1.19
[23] Z. Michalewicz and G. Nazhiyath, “Genocop III: A Co-Evolutionary Algorithm for Numerical Optimization Problems with Nonlinear Constraints,” Proceedings of the Second IEEE International Conference on Evolutionary Computation, Perth, 29 November-1 December 1995, pp. 647-651. doi:10.1109/ICEC.1995.487460
[24] M. Sakawa, K. Kato, H. Sunada and T. Shibano, “Fuzzy Programming for Multiobjective 0-1 Programming Problems through Revised Genetic Algorithms,” European Journal of Operational Research, Vol. 97, No. 1, 1997, pp. 149-158. doi:10.1016/S0377-2217(96)00023-9
[25] H.-J. Zimmermann, “Fuzzy Programming and Linear Programming with Several Objective Functions,” Fuzzy Sets and Systems, Vol. 1, No. 1, 1978, pp. 45-55. doi:10.1016/0165-0114(78)90031-3

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.