Meta-Analysis: 18F-FDG PET or PET/CT for the Evaluation of Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer


Purpose: To evaluate the accuracy and the predictive value of 18F-FDG PET or PET/CT in the assessment of neoadjuvant chemotherapy (NAC) in locally advanced breast cancer by meta-analysis. Materials and Methods: Relevant studies were identified by systematic searches of PUBMED and COCHRANE databases, published in English. To ensure homogeneity of all included studies, selection criteria were established and all the studies were scored according to Quality Assessment of Diagnostic Accuracy Studies (QUADAS) criteria. Meta-analysis was done on the diagnostic performance data from eligible studies. Draw funnel plots to explore the publication bias. Draw forest plots to exclude abnormal data(s). Use Spearman correlation coefficients p, likelihood ratio x2 test and I2 index in order to indicate heterogeneity. Estimate and compare the weighted summary sensitivities (SEs), specificities (SPs), diagnostic odds ratios (DORs), and summary receiver operating characteristic (SROC) curves of PET and other examinations (measuring the size of tumor). Subgroup analyses were performed to identify heterogeneity potential sources. Do Z test to find significant difference between each results. Results: 27 groups of data in 19 eligible studies were included with a total of 1164 subjects evaluated by 18F-FDG PET or PET/CT and 291 ones evaluated by other examinations. Funnel plots showed the existence of publication bias. Spearman correlation coefficients p, likelihood ratio x2 test and I2 index explored the heterogeneity. The Results of the Weighted Summary: SEPET was significantly higher than SED [83.7% (329/393) vs. 59.0% (98/166), p < 0.001], SPPET was significantly higher than SPD [66.8% (512/766) vs. 40.8% (51/125), p < 0.001], DORPET was significantly higher than DORD (14.02 vs. 1.29, p < 0.05). The results show that FDG-PET was more accurate in assessment NAC efficiency. Draw SROC curves with Metadisc 14.0 and caculate results showed AUCPET and Q*PET were both significantly higher than AUCD and Q*D (AUCs 0.8838 vs. 0.6046; Q*s 0.8143 vs. 0.5788, p < 0.001), which confirmed the advantage of FDG-PET. Subgroup analysis showed that performing FDG-PET after the 1st or 2nd cycle of NAC was a litter better than later with higher SE (p = 0.083). Standardized uptake value (SUV) reduction rate between 40% and 45% as FDG-PET response threshold value was used for its highest SP (p = 0.01), while no significant difference was found comparing SEs and DORs (p > 0.05). Trend of higher SE and lower SP were found at ER negative breast cancers than ER positive ones (SEs 93.94% vs. 83.33%; SPs 35.76% vs. 62.24%), though Z test did not find significant difference (p > 0.05). Conclusion: This meta-analysis showed that FDG-PET or PET/CT does have a higher global accuracy in assessing the response for NAC in breast cancer. Comparing with clinical response, metabolic response plays a potential role in directing therapy for breast cancer. Factors which affected the accuracy of FDG-PET assessment included PET timing point, SUV reduction rate as threshold value and ER expression.

Share and Cite:

Y. Xi, M. Zhang, R. Guo, M. Zhang, J. Hu and B. Li, "Meta-Analysis: 18F-FDG PET or PET/CT for the Evaluation of Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer," Journal of Cancer Therapy, Vol. 3 No. 5A, 2012, pp. 662-672. doi: 10.4236/jct.2012.325086.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. L. Parker, T. Tong, S. Bolden and P. A. Wingo, “Cancer Statistics, 1997,” CA: A Cancer Journal for Clinicians, Vol. 47, No. 1, 1997, pp. 5-27.doi:10.3322/canjclin.47.1.5
[2] D. von Fournier, H. W. Anton, H. Junkermann, G. Bastert and G. van Kaick, “Breast Cancer Screening. State of the Art and Introduction to Preventive Measures,” Radiologe, Vol. 33, No. 5, 1993, pp. 227-235.
[3] G. A. Atlanta, “Breast Cancer Facts and Figures,” American Cancer Society, 2002.
[4] B. Fisher, J. Bryant, N. Wolmark, E. Mamounas, A. Brown, E. R. Fisher, D. L. Wickerham, M. Begovic, A. DeCillis, A. Robidoux, R. G. Margolese, A. B. Cruz, Jr., J. L. Hoehn, A. W. Lees, N. V. Dimitrov and H. D. Bear, “Effect of Preoperative Chemotherapy on the Outcome of Women with Operable Breast Cancer,” Journal of Clinical Oncology, Vol. 16, No. 8, 1998, pp. 2672-2685.
[5] P. Rastogi, S. J. Anderson, H. D. Bear, C. E. Geyer, M. S. Kahlenberg, A. Robidoux, R. G. Margolese, J. L. Hoehn, V. G. Vogel, S. R. Dakhil, D. Tamkus, K. M. King, E. R. Pajon, M. J. Wright, J. Robert, S. Paik, E. P. Mamounas and N. Wolmark, “Preoperative Chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27,” Journal of Clinical Oncology, Vol. 26, No. 5, 2008, pp. 778-785.doi:10.1200/JCO.2007.15.0235
[6] S. Chia, S. M. Swain, D. R. Byrd and D. A. Mankoff, “Locally Advanced and Inflammatory Breast Cancer,” Journal of Clinical Oncology, Vol. 26, No. 5, 2008, pp. 786-790. doi:10.1200/JCO.2008.15.0243
[7] E. R. Fisher, J. Wang, J. Bryant, B. Fisher, E. Mamounas and N. Wolmark, “Pathobiology of Preoperative Chemotherapy: Findings from the National Surgical Adjuvant Breast and Bowel (NSABP) Protocol B-18,” Cancer, Vol. 95, No. 4, 2002, pp. 681-695. doi:10.1002/cncr.10741
[8] J. L. Khatcheressian, A. C. Wolff, T. J. Smith, E. Grunfeld, H. B. Muss, V. G. Vogel, F. Halberg, M. R. Somerfield and N. E. Davidson, “American Society of Clinical Oncology 2006 Update of the Breast Cancer Follow-Up and Management Guidelines in the Adjuvant Setting,” Journal of Clinical Oncology, Vol. 24, No. 31, 2006, pp. 5091-5097. doi:10.1200/JCO.2006.08.8575
[9] C. R. Isasi, R. M. Moadel and M. D. Blaufox, “A Meta-Analysis of Fdg-Pet for the Evaluation of Breast Cancer Recurrence and Metastases,” Breast Cancer Research and Treatment, Vol. 90, No. 2, 2005, pp. 105-112.doi:10.1007/s10549-004-3291-7
[10] N. Houssami, P. Macaskill, M. L. Marinovich, J. M. Dixon, L. Irwig, M. E. Brennan and L. J. Solin, “Meta-Analysis of the Impact of Surgical Margins on Local Recurrence in Women with Early-Stage Invasive Breast Cancer Treated with Breast-Conserving Therapy,” European Journal of Cancer, Vol. 46, No. 18, 2010, pp. 3219-3232. doi:10.1016/j.ejca.2010.07.043
[11] L. Pan, Y. Han, X. Sun, J. Liu and H. Gang, “FDG-PET and Other Imaging Modalities for the Evaluation of Breast Cancer Recurrence and Metastases: A Meta-Analysis,” Journal of Cancer Research and Clinical Oncology, Vol. 136, No. 7, 2010, pp. 1007-1022.doi:10.1007/s00432-009-0746-6
[12] T. Liu, T. Cheng, W. Xu, W. L. Yan, J. Liu and H. L. Yang, “A Meta-Analysis of 18FDG-PET, MRI and Bone Scintigraphy for Diagnosis of Bone Metastases in Patients with Breast Cancer,” Skeletal Radiology, Vol. 40, No. 5, 2011, pp. 523-531. doi:10.1007/s00256-010-0963-8
[13] P. Shie, R. Cardarelli, D. Brandon, W. Erdman and N. Abdulrahim, “Meta-Analysis: Comparison of F-18 Fluorodeoxyglucose-Positron Emission Tomography and Bone Scintigraphy in the Detection of Bone Metastases in Patients with Breast Cancer,” Clinical Nuclear Medicine, Vol. 33, No. 2, 2008, pp. 97-101. doi:10.1097/RLU.0b013e31815f23b7
[14] P. Whiting, A. W. Rutjes, J. B. Reitsma, P. M. Bossuyt and J. Kleijnen, “The Development of QUADAS: A Tool for the Quality Assessment of Studies of Diagnostic Accuracy Included in Systematic Reviews,” BMC Medical Research Methodology, Vol. 3, 2003, p. 25.
[15] L. E. Moses, D. Shapiro and B. Littenberg, “Combining Independent Studies of a Diagnostic Test into a Summary ROC Curve: Data-Analytic Approaches and Some Additional Considerations,” Statistics in Medicine, Vol. 12, No. 14, 1993, pp. 1293-1316. doi:10.1002/sim.4780121403
[16] M. Schelling, N. Avril, J. Nahrig, W. Kuhn, W. Romer, D. Sattler, M. Werner, J. Dose, F. Janicke, H. Graeff and M. Schwaiger, “Positron Emission Tomography Using [(18)F] Fluorodeoxyglucose for Monitoring Primary Chemotherapy in Breast Cancer,” Journal of Clinical Oncology, Vol. 18, No. 8, 2000, pp. 1689-1695.
[17] I.C. Smith, A. E. Welch, A. W. Hutcheon, I. D. Miller, S. Payne, F. Chilcott, S. Waikar, T. Whitaker, A. K. Ah-See, O. Eremin, S. D. Heys, F. J. Gilbert and P. F. Sharp, “Positron Emission Tomography Using [(18)F]-Fluorodeoxy-D-Glucose to Predict the Pathologic Response of Breast Cancer to Primary Chemotherapy,” Journal of Clinical Oncology, Vol. 18, No. 8, 2000, pp. 1676-1688.
[18] S. J. Kim, “Predictive Value of [18F]FDG PET for Pathological Response of Breast Cancer to Neo-Adjuvant Chemotherapy,” Annals of Oncology, Vol. 15, No. 9, 2004, pp. 1352-1357. doi:10.1093/annonc/mdh345
[19] C. Rousseau, A. Devillers, C. Sagan, L. Ferrer, B. Bridji, L. Campion, M. Ricaud, E. Bourbouloux, I. Doutriaux, M. Clouet, D. Berton-Rigaud, C. Bouriel, V. Delecroix, E. Garin, S. Rouquette, I. Resche, P. Kerbrat, J. F. Chatal and M. Campone, “Monitoring of Early Response to Neoadjuvant Chemotherapy in Stage II and III Breast Cancer by [18F]Fluorodeoxyglucose Positron Emission Tomography,” Journal of Clinical Oncology, Vol. 24, No. 34, 2006, pp. 5366-5372. doi:10.1200/JCO.2006.05.7406
[20] D. Li, Q. Yao, L. Li, L. Wang and J. Chen, “Correlation between Hybrid 18F-FDG PET/CT and Apoptosis Induced by Neoadjuvant Chemotherapy in Breast Cancer,” Cancer Biology & Therapy, Vol. 6, No. 9, 2007, pp. 1442-1448. doi:10.4161/cbt.6.9.4621
[21] A. Berriolo-Riedinger, C. Touzery, J.-M. Riedinger, M. Toubeau, B. Coudert, L. Arnould, C. Boichot, A. Cochet, P. Fumoleau and F. Brunotte, “[18F]FDG-PET Predicts Complete Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 34, No. 12, 2007, pp. 1915-1924. doi:10.1007/s00259-007-0459-5
[22] G. M. McDermott, A. Welch, R. T. Staff, F. J. Gilbert, L. Schweiger, S. I. K. Semple, T. A. D. Smith, A. W. Hutcheon, I. D. Miller, I. C. Smith and S. D. Heys, “Monitoring Primary Breast Cancer throughout Chemotherapy Using FDG-PET,” Breast Cancer Research and Treatment, Vol. 102, No. 1, 2006, pp. 75-84.doi:10.1007/s10549-006-9316-7
[23] J. Duch, D. Fuster, M. Munoz, P. L. Fernández, P. Paredes, M. Fontanillas, F. Guzmán, S. Rubí, F. J. Lomena and F. Pons, “18F-FDG PET/CT for Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 36, No. 10, 2009, pp. 1551-1557.doi:10.1007/s00259-009-1116-y
[24] A. Kumar, R. Kumar, V. Seenu, S. D. Gupta, M. Chawla, A. Malhotra and S. N. Mehta, “The Role of 18F-FDG PET/CT in Evaluation of Early Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer,” European Radiology, Vol. 19, No. 6, 2009, pp. 1347-1357. doi:10.1007/s00330-009-1303-z
[25] J. Schwarz-Dose, M. Untch, R. Tiling, S. Sassen, S. Mahner, S. Kahlert, N. Harbeck, A. Lebeau, W. Brenner, M. Schwaiger, F. Jaenicke and N. Avril, “Monitoring Primary Systemic Therapy of Large And Locally Advanced Breast Cancer by Using Sequential Positron Emission Tomography Imaging with [18f]Fluorodeoxyglucose,” Journal of Clinical Oncology, Vol. 27, No. 4, 2009, pp. 535-541. doi:10.1200/JCO.2008.17.2650
[26] J. H. Choi, H. I. Lim, S. K. Lee, W. W. Kim, S. M. Kim, E. Cho, E. Y. Ko, B.-K. Han, Y. H. Park, J.-S. Ahn, Y.-H. Im, J. E. Lee, J.-H. Yang and S. J. Nam, “The Role of PET CT to Evaluate the Response to Neoadjuvant Chemotherapy in Advanced Breast Cancer: Comparison with Ultrasonography and Magnetic Resonance Imaging,” Journal of Surgical Oncology, Vol. 102, No. 5, 2009, pp. 392-397. doi:10.1002/jso.21424
[27] S.-Y. Jung, S.-K. Kim, B.-H. Nam, S. Y. Min, S. J. Lee, C. Park, Y. Kwon, E.-A. Kim, K. L. Ko, I. H. Park, K. S. Lee, K. H. Shin, S. Lee, S. W. Kim, H.-S. Kang and J. Ro, “Prognostic Impact of [18F] FDG-PET in Operable Breast Cancer Treated with Neoadjuvant Chemotherapy,” Annals of Surgical Oncology, Vol. 17, No. 1, 2009, pp. 247-253. doi:10.1245/s10434-009-0710-3
[28] S. Ueda, H. Tsuda, T. Saeki, J. Omata, A. Osaki, T. Shigekawa, J. Ishida, K. Tamura, Y. Abe, T. Moriya and J. Yamamoto, “Early Metabolic Response to Neoadjuvant Letrozole, Measured by FDG PET/CT, Is Correlated with a Decrease in the Ki67 Labeling Index in Patients with Hormone Receptor-Positive Primary Breast Cancer: A Pilot Study[J/OL],” Breast Cancer, Vol. 18, No. 4, 2010, pp. 299-308.
[29] M. E. Schneider-Kolsky, S. Hart, J. Fox, P. Midolo, J. Stuckey, M. Hofman and V. Ganju, “The Role of Chemotherapeutic Drugs in the Evaluation of Breast Tumour Response to Chemotherapy Using Serial FDG-PET,” Breast Cancer Research, Vol. 12, No. 3, 2010, p. R37.doi:10.1186/bcr2591
[30] A. A. Martoni, C. Zamagni, S. Quercia, M. Rosati, N. Cacciari, A. Bernardi, A. Musto, S. Fanti, D. Santini and M. Taffurelli, “Early18F-2-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography May Identify a Subset of Patients with Estrogen Receptor-Positive Breast Cancer Who Will Not Respond Optimally to Preoperative Chemotherapy,” Cancer, Vol. 116, No. 4, 2010, pp. 805-813.doi:10.1002/cncr.24820
[31] J. S. Park, W. K. Moon, C. Y. Lyou, N. Cho, K. W. Kang and J. K. Chung, “The Assessment of Breast Cancer Response to Neoadjuvant Chemotherapy: Comparison of Magnetic Resonance Imaging and 18F-Fluorodeoxyglucose Positron Emission Tomography,” Acta Radiologica, Vol. 52, No. 1, 2011, pp. 21-28.doi:10.1258/ar.2010.100142
[32] S. Ueda, T. Saeki, T. Shigekawa, J. Omata, T. Moriya, J. Yamamoto, A. Osaki, N. Fujiuchi, M. Misumi, H. Takeuchi, T. Sakurai, H. Tsuda, K. Tamura, J. Ishida, Y. Abe, E. Imabayashi, I. Kuji and H. Matsuda, “18F-Fluorodeoxyglucose Positron Emission Tomography Optimizes Neoadjuvant Chemotherapy for Primary Breast Cancer to Achieve Pathological Complete Response,” International Journal of Clinical Oncology, Vol. 17, No. 3, 2011, pp. 276-282.
[33] S. H. Park, W. K. Moon, N. Cho, J. M. Chang, S.-A. Im, I. A. Park, K. W. Kang, W. Han and D.-Y. Noh, “Comparison of Diffusion-Weighted MR Imaging and FDG PET/CT to Predict Pathological Complete Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer,” European Radiology, Vol. 22, No. 1, 2011, pp. 18- 25.
[34] B. Keam, S. A. Im, Y. Koh, S. W. Han, D. Y. Oh, N. Cho, J. H. Kim, W. Han, K. W. Kang, W. K. Moon, T. Y. Kim, I. A. Park, D. Y. Noh, J. K. Chung and Y. J. Bang, “Early Metabolic Response Using FDG PET/CT and Molecular Phenotypes of Breast Cancer Treated with Neoadjuvant Chemotherapy,” BMC Cancer, Vol. 11, No. 1, 2011, p. 452.
[35] B. Fisher, N. Gunduz and E. A. Saffer, “Influence of the Interval between Primary Tumor Removal and Chemo- therapy on Kinetics and Growth of Metastases,” Cancer Research, Vol. 43, No. 4, 1983, pp. 1488-1492.
[36] S. Chaturvedi, C. McLaren, A. C. Schofield, K. N. Ogston, T. K. Sarkar, A. W. Hutcheon, I. D. Miller and S. D. Heys, “Patterns of Local and Distant Disease Relapse in Patients with Breast Cancer Treated with Primary Chemotherapy: Do Patients with a Complete Pathological Response Differ from Those with Residual Tumour in the Breast?” Breast Cancer Research and Treatment, Vol. 93, No. 2, 2005, pp. 151-158.doi:10.1007/s10549-005-4615-y
[37] W. B. Eubank, D. A. Mankoff, H. J. Vesselle, J. F. Eary, E. K. Schubert, L. K. Dunnwald, S. K. Lindsley, J. R. Gralow, M. M. Austin-Seymour, G. K. Ellis and R. B. Livingston, “Detection of Locoregional and Distant Recurrences in Breast Cancer Patients by Using FDG PET,” Radiographics, Vol. 22, No. 1, 2002, pp. 5-17.
[38] D. Groheux, S. Giacchetti, J. L. Moretti, R. Porcher, M. Espie, J. Lehmann-Che, A. de Roquancourt, A. S. Hamy, C. Cuvier, L. Vercellino and E. Hindie, “Correlation of High 18F-FDG Uptake to Clinical, Pathological and Biological Prognostic Factors in Breast Cancer,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 38, No. 3, 2011, pp. 426-435.doi:10.1007/s00259-010-1640-9
[39] M. E. Straver, E. J. Rutgers, S. Rodenhuis, S. C. Linn, C. E. Loo, J. Wesseling, N. S. Russell, H. S. Oldenburg, N. Antonini and M. T. Vrancken Peeters, “The Relevance of Breast Cancer Subtypes in the Outcome of Neoadjuvant Chemotherapy,” Annals of Surgical Oncology, Vol. 17, No. 9, 2010, pp. 2411-2418.doi:10.1245/s10434-010-1008-1
[40] G. von Minckwitz, S. Kummel, P. Vogel, C. Hanusch, H. Eidtmann, J. Hilfrich, B. Gerber, J. Huober, S. D. Costa, C. Jackisch, S. Loibl, K. Mehta and M. Kaufmann, “Intensified Neoadjuvant Chemotherapy in Early-Responding Breast Cancer: Phase III Randomized GeparTrio Study,” Journal of the National Cancer Institute, Vol. 100, No. 8, 2008, pp. 552-562.doi:10.1093/jnci/djn089
[41] Y. Wang, C. Zhang, J. Liu and G. Huang, “Is 18F-FDG PET Accurate to Predict Neoadjuvant Therapy Response in Breast Cancer? A Meta-Analysis,” Breast Cancer Research and Treatment, Vol. 131, No. 2, 2012, pp. 357-369. doi:10.1007/s10549-011-1780-z
[42] Y. Sanli, S. Kuyumcu, Z. G. Ozkan, G. Isik, H. Karanlik, B. Guzelbey, C. Turkmen, S. Ozel, E. Yavuz and A. Mudun, “Increased FDG Uptake in Breast Cancer Is Associated with Prognostic Factors,” Annals of Nuclear Medicine, Vol. 26, No. 4, 2012, pp. 345-350.doi:10.1007/s12149-012-0579-2

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.