Share This Article:

Vegetation regrowth trends in post forest fire ecosystems across North America from 2000 to 2010

Abstract Full-Text HTML Download Download as PDF (Size:3150KB) PP. 755-770
DOI: 10.4236/ns.2012.410100    4,841 Downloads   6,756 Views   Citations

ABSTRACT

The goal of this study was to determine whether climate has affected vegetation regrowth over the past decade (2000 to 2010) in post-fire forest ecosystems of the United States and Canada. Our methodology detected trends in the monthly MODerate resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) timeseries within forest areas that burned between 1984 and 1999. The trends in summed growing season EVI (composited to 8 km spatial resolution) within all burned area perimeters showed that nearly 1.6% post-fire forest area declined in vegetation greenness cover significantly (p < 0.05) over the past decade. Nearly 62% of all post-fire forest area showed a non significant EVI regrowth trend from 2000 to 2010. Regression results detected numerous significantly negative trend pixels in post-fire areas from 1994-1999 to indicate that forest regrowth has not yet occurred to any measurable level in many recent wildfire areas across the continent. We found several noteworthy relationships between annual temperature and precipitation patterns and negative post-fire forest EVI trends across North America. Change patterns in the climate moisture index (CMI), growing degree days (GDD), and the standardized precipitation index (SPI) were associated with post-fire forest EVI trends. We conclude that temperature warming-induced change and variability of precipitation at local and regional scales may have altered the trends of large post-fire forest regrowth and could be impacting the resilience of post-fire forest ecosystems in North America.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Li, S. and Potter, C. (2012) Vegetation regrowth trends in post forest fire ecosystems across North America from 2000 to 2010. Natural Science, 4, 755-770. doi: 10.4236/ns.2012.410100.

References

[1] Amiro, B.D., Chen, J.M. and Liu, J. (2000) Net primary productivity following forest fire for Canadian ecoregions. Canadian Journal of Forest Research, 30, 939-947. doi:10.1139/x00-025
[2] Casady, G.M. and Marsh, S.E. (2010) Broad-scale environmental conditions responsible for post-fire vegetation dynamics. Remote Sensing, 2, 2643-2664. doi:10.3390/rs2122643
[3] Cuevas-GonzALez, M., Gerard, F., Balzter, H. and RiaNO, D. (2009) Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices. Global Change Biology, 15, 561-577. doi:10.1111/j.1365-2486.2008.01784.x
[4] Epting, J. and Verbyla, D.L. (2005) Landscape level interactions of pre-fire vegetation, burn severity, and post-fire vegetation over a 16-year period in interior Alaska. Canadian Journal of Forest Research, 35, 1367- 1377. doi:10.1139/x05-060
[5] Pickett, S.T.A. and White, P.S. (1985) The ecology of natural disturbances and patch dynamics. Academic Press, Orlando.
[6] Overpeck, J.T., Rind, D. and Goldberg, R. (1990) Climate-induced changes in forest disturbance and vegetation. Nature, 343, 51-53. doi:10.1038/343051a0
[7] Westerling, A.L., Hidalgo, H.G., Cayan, D.R. and Swetnam, T.W. (2006) Warming and earlier spring increase western US forest wildfire activity. Science, 313, 940-943. doi:10.1126/science.1128834
[8] Goetz, S.J., Fiske, G.J. and Bunn, A.G. (2006) Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sensing of Environment, 101, 352-365. doi:10.1016/j.rse.2006.01.011
[9] Baldocchi, D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S., et al. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415-2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
[10] McGuire, A.D., Sitch, S. and Wittenberg, U. (2001) Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate, and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15, 183. doi:10.1029/2000GB001298
[11] Kasischke, E.S. and French, N.H.F. (1997) Constraints on using AVHRR composite index imagery to study patterns of vegetation cover in boreal forests. International Journal of Remote Sensing, 18, 2403-2426. doi:10.1080/014311697217684
[12] Amiro, B.D., MacPherson, I.J., Desjardins, R.L., Chen, J.M. and Liu, J. (2003) Post-fire carbon dioxide fluxes in the western Canadian boreal forest: Evidence from towers, aircraft and remote sensing. Agricultural and Forest Meteorology, 115, 91-107. doi:10.1016/S0168-1923(02)00170-3
[13] Brown, M.E., Pinzon, J.E. and Tucker, C.J. (2004) New vegetation index data set to monitor global change. American Geophysical Union EOS Transactions, 85, 565- 569. doi:10.1029/2004EO520003
[14] Goetz, S.J., Bunn, A.G., Fiske, G.J. and Houghton, R.A. (2005) Satellite observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences, 103, 13521-13525. doi:10.1073/pnas.0506179102
[15] LP-DACC: NASA land processes distributed active archive center (2007) MODIS/Terra vegetation indices monthly L3 global 0.05Deg CMG (MOD13C2), Version 005, USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls.
[16] Huete, A., Didan, K., Miura, T., Rodriquez, E., Gao, X. and Ferreira, L. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195-213. doi:10.1016/S0034-4257(02)00096-2
[17] Eidenshenk, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B. and Howard, S. (2007) A project for monitoring trends in burn severity. Fire Ecology, 3, 3-21.
[18] Canadian Forest Service (2010) National fire database— Agency fire data. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton.
[19] Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J.N. and Wickham, J. (2007) Completion of the 2001 national land cover database for the conterminous United States. Photogrammetric Engineering and Remote Sensing, 73, 337- 341.
[20] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R. and Joseph, D. (1996) The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437-472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[21] Potter, C., Klooster, S., Hiatt, C., Genovese, V. and Castilla-Rubio J.C. (2011) Changes in the carbon cycle of Amazon ecosystems during the 2010 drought. Environmental Research Letters, 6, 034024. doi:10.1088/1748-9326/6/3/034024
[22] Potter, C.S. and Brooks, V. (1998) Global analysis of empirical relations between annual climate and seasonality of NDVI. International Journal of Remote Sensing, 19, 2921-2948. doi:10.1080/014311698214352
[23] Willmott, C.J. and Feddema, J.J. (1992) A more rational climatic moisture index. Professional Geographer, 44, 84-88. doi:10.1111/j.0033-0124.1992.00084.x
[24] McKee, T.B., Doeskin, N.J. and Kieist, J. (1993) The relationship of drought frequency and duration to time scales. Proceedings of 8th Conference on Applied Climatology, 17-22 January 1993, Boston, 179-184.
[25] Guttman, N.B. (1999) Accepting the standardized precipitation index: A calculation algorithm. Journal of the American Water Resources Association, 35, 311-322. doi:10.1111/j.1752-1688.1999.tb03592.x
[26] Verbesselt, J., Hyndman, R., Newnham, G. and Culvenor, D. (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114, 106-115. doi:10.1016/j.rse.2009.08.014
[27] Verbesselt, J., Hyndman, R., Zeileis, A. and Culvenor, D. (2010) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 114, 2970-2980. doi:10.1016/j.rse.2010.08.003
[28] Crist, E.P. and Cicone, R.C. (1984). A physically-based transformation of thematic mapper data—The TM tasseled cap. IEEE Transactions on Geoscience and Remote Sensing, 22, 256-263. doi:10.1109/TGRS.1984.350619
[29] Anyamba, A. and Eastman, J.R. (1996). Interannual variability of NDVI over Africa and its relation to El Nino southern oscillation. International Journal of Remote Sensing, 17, 2533-2548. doi:10.1080/01431169608949091
[30] Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, C.E., Eds. (2007) Climate change 2007: Impacts, adaptation and vulnerability. Cambridge University Press, Cambridge.
[31] Aukema, B.H., Carroll, A.L., Zheng, Y., Zhu, J., Raffa, K.F., Moore, R.D., Stahl, K. and Taylor, S.W. (2008) Movement of outbreak populations of mountain pine beetle: Influence of spatiotemporal patterns and climate. Ecography, 31, 348-358. doi:10.1111/j.0906-7590.2007.05453.x
[32] Bentz, B.J., Regniere, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., et al. (2010) Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60, 602-613. doi:10.1525/bio.2010.60.8.6

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.