Study of Gas Heating by a Microwave Plasma Torch


Among the different types of microwave plasma torches, the axial injection torch (TIA) has been used for several years to create chemically active species, in applications such as gas analysis, surface processing and gaseous waste treatments. The TIA allows the coupling of microwave energy (2.45 GHz) to a gas injected axially at the nozzle’s exit. The TIA produces non-local thermodynamic equilibrium plasmas with a high luminosity and a maximum density of charged particles at the nozzle’s exit. The present work is dedicated to study the plasma created by a TIA, running at atmospheric pressure. The study involves both experiment and modeling of this torch, in order to maximize the coupling between the microwave power and the plasma and to define the optimum plasma and flow operating conditions for plasma-to-gas heat transfer.

Share and Cite:

K. Gadonna, O. Leroy, P. Leprince, L. Alves and C. Boisse-Laporte, "Study of Gas Heating by a Microwave Plasma Torch," Journal of Modern Physics, Vol. 3 No. 10A, 2012, pp. 1603-1615. doi: 10.4236/jmp.2012.330198.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Tendero, C. Tixier, P. Tristant, J. Demaison and P. Leprince, “Atmospheric Pressure Plasmas: A Review,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, No. 1, 2006, pp. 2-30. doi:10.1016/j.sab.2005.10.003
[2] N. Azouz, S. Chaabani, J. Lerbet and A. Abichou, “Computation of the Added Masses of an Unconventional Airship,” Journal of Applied Mathematics, Vol. 2012, 2012, Article ID: 714627, 19 pages.
[3] R. B. Bird, W. E. Steward and E. N. Lightfoot, “Transport phenomena,” John Wiley, Hoboken, 1960.
[4] P. Fauchais and A. Vardelle, “Thermal Plasmas,” IEEE Transactions on Plasma Science, Vol. 25, No. 6, 1997, pp. 1258-1280. doi:10.1109/27.650901
[5] E. A. H. Timmermans, J. Jonkers, I. A. J. Thomas, A. Rodero, M. C. Quintero, A. Sola, A. Gamero and J. A. M. van der Mullen, “The Behavior of Molecules in Microwave-Induced Plasmas Studied by Optical Emission Spectroscopy. 1. Plasmas at Atmospheric Pressure,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 53, No. 11, 1998, pp. 1553-1566. doi:10.1016/S0584-8547(98)00186-4
[6] M. Moisan, Z. Zakrzewski, R. Pantel and P. Leprince, “A Waveguide-Based Launcher to Sustain Long Plasma Columns through the Propagation of an Electromagnetic Surface-Wave,” IEEE Transactions on Plasma Science, Vol. 12, No. 3, 1984, pp. 203-214. doi:10.1109/TPS.1984.4316320
[7] M. Moisan, G. Sauve, Z. Zakrzewski and J. Hubert, “An Atmospheric Pressure Waveguidefed Microwave Plasma Torch: The Tia Design,” Plasma Sources Science & Technology, Vol. 3, No. 4, 1994, pp. 584-592. doi:10.1088/0963-0252/3/4/016
[8] A. Ricard, L. Stonge, H. Malvos, A. Gicquel, J. Hubert and M. Moisan, “Torche à Plasma Micro-Onde: Deux Configurations Complémentaires,” Journal de Physique III, Vol. 5, No. 8, 1995, pp. 1269-1285. doi:10.1051/jp3:1995185
[9] J. Torres, M. J. van de Sande, J. J. A. M. van der Mullen, A. Gamero and A. Sola, “Stark Broadening for Simultaneous Diagnostics of the Electron Density and Temperature in Atmospheric Microwave Discharges,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 61, No. 1, 2006, pp. 58-68. doi:10.1016/j.sab.2005.11.002
[10] J. Jonkers, J. M. deRegt, J. A. M. vanderMullen, H. P. C. Vos, F. P. J. deGroote and E. A. H. Timmermans, “On the Electron Temperatures and Densities in Plasmas Produced by the ‘Torche a Injection Axiale’,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 51, No. 11, 1996, pp. 1385-1392. doi:10.1016/0584-8547(96)01493-0
[11] M. Jimenez-Diaz, J. van Dijk and J. J. A. M. van der Mullen, “Effect of Remote Field Electromagnetic Boundary Conditions on Microwave-Induced Plasma Torches,” Journal of Physics D: Applied Physics, Vol. 44, No. 16, 2011, Article ID: 165203. doi:10.1088/0022-3727/44/16/165203
[12] L. L. Alves, R. Alvarez, L. Marques, S. J. Rubio, A. Rodero, and M. C. Quintero, “Modeling of an Axial Injection Torch,” European Physical Journal: Applied Physics, Vol. 46, No. 2, 2009, p. 21001. doi:10.1051/epjap/2009049
[13] E. A. H. Timmermans, F. P. J. de Groote, J. Jonkers, A. Gamero, A. Sola and J. J. A. M. van der Mullen, “Atomic Emission Spectroscopy for the On-Line Monitoring of Incineration Processes,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 58, No. 5, 2003, pp. 823-836. doi:10.1016/S0584-8547(03)00017-X
[14] S. S. Asad, C. Tendero, C. Dublanche-Tixier, P. Tristant, C. Boisse-Laporte, O. Leroy and P. Leprince, “Effect of Atmospheric Microwave Plasma Treatment on Organic Lubricant on a Metallic Surface,” Surface & Coatings Technology, Vol. 203, No. 13, 2009, pp. 1790-1796. doi:10.1016/j.surfcoat.2008.12.026
[15] S. J. Rubio, A. Rodero and M. C. Quintero, “Application of a Microwave Helium Plasma Torch Operating at Atmospheric Pressure to destroy Trichloroethylene,” Plasma Chemistry and Plasma Processing, Vol. 28, No. 4, 2008, pp. 415-428. doi:10.1007/s11090-008-9133-3
[16] L. L. Alves and C. M. Ferreira, “Electron Kinetics in Weakly Ionized Helium under DC and HF Applied Electricfields,” Journal of Physics D: Applied Physics, Vol. 24, No. 4, 1991, pp. 581-592. doi:10.1088/0022-3727/24/4/009
[18] C. O. Laux, T. G. Spence, C. H. Kruger and R. N. Zare, “Optical Diagnostics of Atmospheric Pressure Air Plasmas,” Plasma Sources Science & Technology, Vol. 12, 2003, pp. 125-138.
[19] M. A. Gigosos and V. Cardenoso, “New Plasma Diagnosis Tables of Hydrogen Stark Broadening Including Ion Dynamics,” Journal of Physics B: Atomic Molecular and Optical Physics, Vol. 29, No. 20, 1996, pp. 4795-4838. doi:10.1088/0953-4075/29/20/029
[20] M. A. Gigosos, M. A. Gonzalez and V. Cardenoso, “Computer Simulated Balmer-Alpha, -Beta and -Gamma Stark Line Profiles for Non-Equilibrium Plasmas Diagnostics,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 58, No. 8, 2003, pp. 1489-1504. doi:10.1016/S0584-8547(03)00097-1
[21] J. Torres, O. Carabano, M. Fernandez, S. Rubio, R. Alvarez, A. Rodero, C. Lao, M. C. Quintero, A. Gamero and A. Sola, “The Stark-Crossing Method for the Simultaneous Determination of the Electron Temperature and Density in Plasmas,” Journal of Physics Conference Series, Vol. 44, No. 1, 2006, p. 70. doi:10.1088/1742-6596/44/1/008
[22] M. A. Heald and C. B. Wharton, “Plasma Dignotics with Microwave,” Wiley, New York, 1965.
[23] K. Gadonna, O. Leroy, T. Silva, P. Leprince, C. Boisse-Laporte and L. L. Alves, “Hydrodynamic Study of a Microwave Plasma Torch,” European Physics Journal of Applied Physics, Vol. 56, No. 2, 2011, p. 24008. doi:10.1051/epjap/2011110161
[24] R. P. Cardoso, T. Belmonte, P. Keravec, F. Kosior and G. Henrion, “Influence of Impurities on the Temperature of an Atmospheric Helium Plasma in Microwave Resonant Cavity,” Journal of Physics D: Applied Physics, Vol. 40, No. 5, 2007, pp. 1394-1400. doi:10.1088/0022-3727/40/5/012
[25] O. Schenk and K. G?rtner, “Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO,” Journal of Future Generation Computer Systems, Vol. 20, No. 3, 2004, pp. 475-487.
[26] J. P. Berenger, “Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics, Vol. 127, No. 2, 1996, pp. 363-379. doi:10.1006/jcph.1996.0181
[27] T. Belmonte, R. P. Cardoso, G. Henrion and F. Kosior, “Collisional-Radiative Modelling of a Helium Microwave Plasma in a Resonant Cavity,” Journal of Physics D: Applied Physics, Vol. 40, No. 23, 2007, pp. 7343-7356. doi:10.1088/0022-3727/40/23/015

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.