Preparation of Perfluorinated Surfactant Activates for Antifouling Paints

Abstract

Antifouling paints are the most reliable way to prevent biofouling of submerged surfaces. The high toxicity of organotin paints, prompted us to look for ideas to develop paints that do not present environmental risks. In this work, we prepare a painting by a modification of acrylic acid monomer containing a free carboxyl group. The biocide that is selected is the perfluorinated chain with eight carbons. Chemical modifications of the resins are made through a radical reaction. The magnitudes of changes are monitored by proton nuclear magnetic resonance NMR, gel permeation chromatography (GPC) and the light scattering (LS) at a fixed angle 90℃. The glass transition temperature of the surfactant is obtained by the differential scanning calorimetry (DSC). The antifouling properties of the paint are followed by exposure of panels to the marine environment by visual observation.

Share and Cite:

Bacha, A. and Méghabar, R. (2012) Preparation of Perfluorinated Surfactant Activates for Antifouling Paints. Journal of Surface Engineered Materials and Advanced Technology, 2, 271-277. doi: 10.4236/jsemat.2012.24041.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] V. C. Malsh and N. S. Sangaj, “Fluorinated Acrylic Copolymers Part I : Study of Clear Coatings,” Progress in Organic Coatings, Vol. 53, No. 3, 2005, pp. 207-211.
[2] S. M. Al-Ghais, S. Ahmad and B. Ali, “Differential Inhibition of Xenobiotic-Metabolizing Carboxylesterases by Organotins in Marine Fish,” Ecotoxicology and Environmental Safety, Vol. 46, No. 3, 2000, pp. 258-264.
[3] J. G. Vos, E. Dybing, H. A. Greim, O. Ladefoged, C. Lambre, J. V. Tarazona, I. Brandt and A. D. Vathaak, “Health Effects of Endocrine-Discrupting Chemicals on Wildlife, with Special Reference to the European Situation,”Critical Reviews in Toxicology, Vol. 30, No. 1, 2000, pp. 71-133.
[4] USEPA, “Ambient Aquatic Life Water Quality Criteria for Tributyltin (TBT),” United States Environmental Protection Agency, Washington DC, 2003. http://www.epa.gov
[5] V. C. Malsh and N. S., Sangaj, “Fluorinated Acrylic Copolymers: Part I. Study of Clear Coatings,” Progress in Organic Coatings, Vol. 53, No. 3, 2005, pp. 207-211. doi:10.1016/j.porgcoat.2005.03.003
[6] C. Leroy, “Lutte Contre les Salissures Marines: Approche par procéDés Enzymatiques,” Ph.D. Thesis, Institut National des Sciences Appliquées, Toulouse, 2006.
[7] B. Gupta, N. Muzyyan, S. Saxena, N. Grover and S. Alam, “Preparationof Ion Exchange Menbranes by Radiation Grafting of Acrylic Acid on FEP Films,” Radiation Physics and Chemistry, Vol. 77, No. 1, 2008, pp. 42-48. doi:10.1016/j.radphyschem.2007.03.007
[8] H.-H. Chu, Y.-S. Yeo and K. S. Chuany, “Entry in Emulsion Polymerization Using a Mixture of Sodium Polystyrene Sulfonate and Sodium Dodecyl Sulfate as Surfactant,” Polymer, Vol. 48, No. 8, 2007, pp. 2298-2305. doi:10.1016/j.polymer.2007.02.057
[9] R. Jellali, “Elaboration des Revetements Antifouming par Photoréticulation D’oligoisoprènes Fonctionnalisés: Etude de Leur Activités antibactériennes, Antifongiques et Antialgales,” Ph.D. Thesis, University of Maine, Orono, 2008.
[10] B. Belbachir, “Synthèse et étude de Macromonomères à Activité Biocide: Formulation de Peintures Antisalissure,” Mémoire de Magister, University Es-Senia Oran, Oran, 1996.
[11] V. I. Minkin, O. A. Osipov and Y. A. Zhdanov, “Dipole Moments in Organic Chemistry,” Journal of Chemical Education, Vol. 49, No. 10, 1970, p. A604.
[12] S. Forster and W. Schimtz, Advanced in Polymer Science, Vol. 120, 1995, pp. 53-128.
[13] A. Bacha, “Tensioactifs perfluorés ionique synthèse et études physicochimiques,” Editions Universitaires Européennes, 2011.
[14] M. Thouvenin, J.-J. Peron. C. Charreteur, P. Guerin, J.-Y. Langlois and K. Vallee-Rehel, “A Study of the Biocide Release from Antifouling Paints,” Progress in Organic Coatings, Vol. 44, No. 2, 2002, pp. 75-83. doi:10.1016/S0300-9440(01)00246-6
[15] U. Maschke, F. Roussel, J. M. Buisine and X. Coqueret, “Liquid-Crystal Polymer Composite-Materials—A Thermophysical and Electrooptical Study,” Journal of Thermal Analysis and Calorimetry, Vol. 51, No. 3, 1998, pp. 737-746.
[16] V. Allouchery, F. Roussel, J. M. Buisine and U. Maschke, “Thermodynamic and Electro-Optic Characteristics of UV- Cured Monofunctional Acrylate/Nematic Liquid Crystal Mixtures,” Molecular Crystals and Liquid Crystals Science and Technology: Section A. Molecular Crystals and Liquid Crystals, Vol. 329, No. 1, 1999, pp. 227-237. doi:10.1080/10587259908025944
[17] A. G. Pittman, “Surface Properties of Fluorocarbon Polymers,” In: L.A. Wall (Ed.), (Chapter 13), John Wiley and Sons, Inc., Hoboken, 1972.
[18] J. R. Griffith, J. G. O’Rear and S. A. Reins, “Fluorinated Epoxy Resins,” Chemical Technology, Vol. 2, No. 5, 1972, pp. 311-316.
[19] D. Anton, “Surface-Fluorinated Coatings,” Advanced Materials, Vol. 10, No. 15, 1998, pp. 1197-1205. doi:10.1002/(SICI)1521-4095(199810)10:15<1197::AID-ADMA1197>3.0.CO;2-F
[20] M. Delucchi, S. Turri, A. Barbucci, M. Bassi, S. Novelli and G. Cerisola, “Fluoroether Coatings: Relationship of Electrochemical Impedence Spectroscopy Measurements, Barrier Properties and Polymer Structure,” Journal of Polymer Science Part B: Polymer Physics, Vol. 40, No. 1, 2002, pp. 52-64.
[21] V.C. Malshe, N.S. Sangaj, “Fluorinated Acrylic Copolymers Part I: Study of Clear Coatings,” Progress in Organic Coatings, Vol. 53, No. 3, 2005, pp. 207-211. doi:10.1016/j.porgcoat.2005.03.003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.