Share This Article:

The Static Characteristic Loop and the External Demagnetizing Factor

Abstract Full-Text HTML XML Download Download as PDF (Size:426KB) PP. 684-689
DOI: 10.4236/msa.2012.310100    3,907 Downloads   5,744 Views   Citations

ABSTRACT

In this paper we demonstrate, that shearing is changing only one parameter of the static loop. By using the shearing factor Ns, linked to the widely used, demagnetization coefficient ND, we show the one parameter link between the static unsheared and that of the sheared saturation loop, obtained by a non-toroidal, open circuit hysteresis measurement. The paper illustrates the simple relation between open circuit loop data and measured real static saturation data. The proposed theory is illustrated by using the hyperbolic model. For experimental illustration, tests results are used, which were carried out on two closed and open toroidal samples, made of NO Fe-Si electrical steel sheet, mimicking the demagnetization effect of the open circuit VSM measurement. These are both theoretical and experimental demonstrations, that shearing only changes the inclination of the static hysteresis loop. These test results, presented here, agree very well with the calculated results, based on the proposed method.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Takacs, G. Kovacs and L. Varga, "The Static Characteristic Loop and the External Demagnetizing Factor," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 684-689. doi: 10.4236/msa.2012.310100.

References

[1] F. Fiorillo, “Measurement and Characterisation of Magnetic Materials,” Academic Press, Torino, 2004.
[2] D. Jiles, “Introduction to Magnetism and Magnetic Materials,” Chapman and Hall, New York, 1998.
[3] S. Foner, “The Vibrating Sample Magnetometer: Experiences of a Volunteer (Invited),” Journal of Applied Physics, Vol. 79, No. 8, 1996, p. 4740. doi:10.1063/1.361657
[4] D. B. Clarke, “Demagnetization Factors of Ringcores,” IEEE Transactions on Magnetics, Vol. 35, No. 6, 1999, pp. 4440-4444. doi:10.1109/20.809135
[5] Zs. Szabo and A. Ivanyi, “Demagnetizing Field in Ferromagnetic Sheet,” Physica B: Condensed Matter, Vol. 306, No. 1-4, 2010, pp. 172-177.doi:10.1016/S0921-4526(01)00999-1
[6] T. Nakata, N. Takahashi, K. Fujiwara, M. Nakano, Y. Ogura and K. Matshubara, “An Improved Method for Determining the DC Magnetization Curve Using a Ring Specimen,” IEEE Transactions on Magnetics, Vol. 28, No. 5, 1992, pp. 2456-2458. doi:10.1109/20.179524
[7] J. Takacs, “Mathematics of Hysteretic Phenomena,” Wi- ley-VCH, Berlin, 2003.
[8] J. Takács, “A Phenomenological Mathematical Model of Hysteresis,” International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 20. No. 4., 2001, pp. 1002-1005.
[9] E. Della Torre and F. Vajda, “Parameter Identification of the Complete-Moving-Hysteresis Model Using Major Loop Data,” IEEE Transactions on Magnetics, Vol. 30, No. 6, 1994, pp. 4987-5000. doi:10.1109/20.334286
[10] D. C. Jiles and J. B. Thoelke, “Theory of Ferromagnetic Hysteresis: Determination of Model Parameters from Experimental Hysteresis Loops,” IEEE Transactions on Magnetics, Vol. 25, No. 5, 1989, pp. 3928-3930.doi:10.1109/20.42480
[11] B. D. Cullity, “Introduction to Magnetic Materials,” Addison-Wesley, Reading, 1972, p. 1014.
[12] D. X. Chen, J. A. Brug and R. B. Goldfarb, “Demagnetizing Factors for Cylinders,” IEEE Transactions on Magnetics, Vol. 27, No. 4, 1991, pp. 3601-3619.doi:10.1109/20.102932
[13] J. H. Paterson, S. J. Cooke and A. D. R. Phelps, “Finite-Difference Calculation of Demagnetizing Factors for Shapes with Cylindrical Symmetry,” Journal of Magnetism and Magnetic Materials, Vol. 177-181, 1998, pp. 1472-1473. doi:10.1016/S0304-8853(97)00788-9
[14] K. Tang, H. W. Zhang, Q. Y. Wen and Z. Y. Zhong, “Demagnetization Field of Ferromagnetic Equilateral Triangular Prisms,” Physica B: Condensed Matter, Vol. 363, No. 1-4, 2005, pp. 96-101. doi:10.1016/j.physb.2005.03.007
[15] J. A. Osborn, “Demagnetizing Factors of the General Ellipsoid,” Physical Review, Vol. 67, No. 11-12, 1945, pp. 351-357. doi:10.1103/PhysRev.67.351
[16] L. K. Varga, Gy. Kovács and J. Takács, “Modeling the Overlapping, Simultaneous Magnetization Processes in Ultrasoft Nanocrystalline Alloys,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 3-4, 2008, pp. L26-L29. doi:10.1016/j.jmmm.2007.06.008
[17] J. Takacs, Gy. Kovacs and L. K. Varga, Journal of Magnetism and Magnetic Materials, Vol. 320, No. 20, 2008, p. 1016.
[18] J. Takacs, “Analytical Way to Model Magnetic Transients and Accommodation,” Physica B: Condensed Matter, Vol. 387. No. 1-2, 2007, pp. 217-221.doi:10.1016/j.physb.2006.04.007
[19] J. Takacs and I. Meszaros, “Separation of Magnetic Phases in Alloys,” Physica B: Condensed Matter, Vol. 403, No. 18, 2008, pp. 3137-3140.doi:10.1016/j.physb.2008.03.023
[20] J. Takacs, “The Everett Integral and Its Analytical Approximation,” In: L. Malkinski, Magnetic Materials, Intech Publication, 2012.
[21] I. D. Mayergoyz, “Mathematical Models of Hysteresis and their Applications,” Academic Press, Elsevier, New York, 2008.
[22] J. Takacs, Gy. Kovacs and L. K. Varga, “Hysteresis Reversal,” Physica B: Condensed Matter, Vol. 403, No. 13- 16, 2008, pp. 2293-2297. doi:10.1016/j.physb.2007.12.008

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.