Temperature Effect on Elasticity of Swollen Composite Formed from Polyacrylamide(PAAm) -Multiwall Carbon Nanotubes(MWNTs)

DOI: 10.4236/eng.2012.410079   PDF   HTML   XML   4,622 Downloads   6,336 Views   Citations


Composites formed from Polyacrylamide (PAAm)-Multiwalled carbon nanotubes (MWNTs) were prepared via free radical crosslinking copolymerization with different amounts of MWNTs varying in the range between 0.1 and 50 wt%. The temperature variations of the elastic modulus, G of the PAAm-MWNT composite due to volume phase transition were measured by using tensile testing technique. The composite preserves the ability to undergo the volume phase transition and its elastic modulus and toughness (T) are found strongly dependent on temperature. It is observed that elastic modulus increased when temperature is increased from 30?C to 60?C. Toughness, however presented the reversed behavior versus temperature compare to the elastic modulus.

Share and Cite:

G. Evingür and Ö. Pekcan, "Temperature Effect on Elasticity of Swollen Composite Formed from Polyacrylamide(PAAm) -Multiwall Carbon Nanotubes(MWNTs)," Engineering, Vol. 4 No. 10, 2012, pp. 619-624. doi: 10.4236/eng.2012.410079.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. S. Satarkar, D. Johnson, B. Marrs, R. Andrews, C. Poh, B. Gharaibeh, K. Saito, K. W. Anderson and J. Z. Hilt, “Hydrogel-MWNT Nanocomposites: Synthesis, Characterization, and Heating with Radiofrequency Fields,” Journal of Applied Polymer Science, Vol. 117, 2010, pp. 1813-1819.
[2] E. Fernandez, D. Lopez, E. L. Cabarcos and C. Mijangos, “Viscoelastic and Swelling Properties of Glucose Oxidase Loaded Polyacrylamide Hydrogels and the Evalution of Their Properties as Glucose Sensors,” Polymer, Vol. 46, No. 7, 2005, pp. 2211-2217. doi:10.1016/j.polymer.2004.12.039
[3] H. Li, D. Q. Wang, H. L. Chen, B. L. Liu and L. Z. Gao, “A Novel Gelatin-Carbon Nanotubes Hybrid Hydrogel,” Macromolecular Biosciences, Vol. 3, No. 12, 2003, pp. 720-724. doi:10.1002/mabi.200300034
[4] H. Li, D. Q. Wang, H. L. Chen, B. L. Liu and L. Z. Gao, “Synthesis of a Novel Gelatin-Carbon Nanotubes Hybrid Hydrogel,” Colloids and Surfaces B: Biointerfaces, Vol. 33, No. 2, 2003, pp. 85-88. doi:10.1016/j.colsurfb.2003.08.014
[5] J. N. Coleman, U. Khan, W. J. Blau and Y. K. Gun’ko, “Small But Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites,” Carbon, Vol. 44, No. 9, 2006, pp. 1624-1652. doi:10.1016/j.carbon.2006.02.038
[6] X. Tong, J. Zheng, Y. Lu, Z. Zhang and H. Cheng, “Swelling and Mechanical Behaviors of Carbon Nanotube/Poly(Vinyl Alcohol) Hybrid Hydrogels,” Materials Letters, Vol. 61, No. 8-9, 2007, pp. 1704-1706. doi:10.1016/j.matlet.2006.07.115
[7] A. K. Kota, B. H. Cipriano, M. K. Duesterberg, A. L. Gershon, D. Powell, S. R. Raghavan and H. A. Bruck, “Electrical and Rheological Percolation in Polystyrene/ MWNT Nanocomposites,” Macromolecules, Vol. 40, No. 20, 2007, pp. 7400-7406. doi:10.1021/ma0711792
[8] Y. L. Luo, C. H. Zhang, Y. S. Chen and W. Yang, “Preparation and Characterisation of Polyacrylamide/ MWNTs Nanohybrid Hydrogels with Microporous Structures,” Materials Research Innovations, Vol. 13, No. 1, 2009, pp. 18-27. doi:10.1179/143307509X402138
[9] H. Liu, M. Liu, L. Zhang, L. Ma, J. Chen and Y. Wang, “Dual-Stimuli Sensitive Composites Based on MultiWalled Carbon Nanotubes and Poly(N, N-Diethylacrylamide-co-Acrylic Acid) Hydrogels,” Reactive and Functional Polymers, Vol. 70, No. 5, 2010, pp. 294-300. doi:10.1016/j.reactfunctpolym.2010.02.002
[10] M. Rubinstein, R. H. Colby and A. V. Dobrynin, “Elastic Modulus and Equilibrium Swelling of Polyelectrolyte Gels,” Macromolecules, Vol. 29, No. 1, 1996, pp. 398406. doi:10.1021/ma9511917
[11] S. A. Dubrovskii and G. Rakova, “Elastic and Osmotic Behavior and Network Imperfections of Nonionic and Weakly Ionized Acrylamide Based Hydrogels,” Macromolecules, Vol. 30, No. 24, 1997, pp. 7478-7486. doi:10.1021/ma970788e
[12] A. Wall, J. N. Coleman and M. S. Ferreira, “Physical Mechanism for the Mechanical Reinforcement in Nanotube-Polymer Composite Materials,” Physical Review B, Vol. 71, 2005, Article ID: 125421.
[13] P. K. Valavala and G. M. Odegard, “Modeling Techniques for Determination of Mechanical Properties of Polymer Nanocomposites,” Review Advances in Materials Science, Vol. 9, 2005, pp. 34-44.
[14] R. E. Gorga and R. E. Cohen, “Toughness Enhancements in Poly(Methyl Methacrylate) by Addition of Oriented Multiwalled Carbon nanotubes,” Journal of Polymer Science, Part B, Polymer Physics, Vol. 42, No. 14, 2004, pp. 2690-2702. doi:10.1002/polb.20126
[15] K. Lau, C. Gu and D. Hui, “A Critical Review on Nanotube and Nanotube/Nanoclay Related Polymer Composite Materials,” Composities Part B, Vol. 37, No. 6, 2006, pp. 425-436. doi:10.1016/j.compositesb.2006.02.020
[16] G. Romeo, G. Filippone, A. Fernandez-Nieves, P. Russo and D. Acierno, “Elasticity and Dynamics of Particle Gels in Non-Newtonian Melts,” Rheologica Acta, Vol. 47, No. 9, 2008, pp. 989997. doi:10.1007/s00397-008-0291-2
[17] L. R. G. Treloar, “The Physics of Rubber Elasticity,” Clarendon Press, Oxford, 1975.
[18] L. E. Nielsen and R. F. Landel, “Mechanical Properties of Polymers and Composites,” Marcel Dekker, New York, 1994.
[19] K. S. Anseth, C. N. Bowman and L. B. Peppas, “Mechanical Properties of Hydrogels and Their Experimental Determination,” Biomaterials, Vol. 17, No. 17, 1996, pp. 1647-1657. doi:10.1016/0142-9612(96)87644-7
[20] T. Natsuki and M. Endo, “Stress Simulation of Carbon Nanotubes in Tension and Compression,” Carbon, Vol. 42, No. 11, 2004, pp. 2147-2151. doi:10.1016/j.carbon.2004.04.022

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.