Effects of healthy aging on human primary visual cortex


Aging often results in reduced visual acuity from changes in both the eye and neural circuits [1-4]. In normally aging subjects, primary visual cortex has been shown to have reduced responses to visual stimulation [5]. It is not known, however, to what extent aging affects visual field repre-sentations and population receptive sizes in human primary visual cortex. Here we use func-tional MRI (fMRI) and population receptive field (pRF) modeling [6] to measure angular and ec-centric retinotopic representations and population receptive fields in primary visual cortex in healthy aging subjects ages 57 - 70 and in healthy young volunteers ages 24 - 36 (n = 9). Retinotopic stimuli consisted of black and white, drifting checkerboards comprising moving bars 11 deg in radius. Primary visual cortex (V1) was clearly identifiable along the calcarine sulcus in all hemispheres. There was a significant decrease in the surface area of V1 from 0 to 3 deg eccentricity in the aging subjects with respect to the young subjects (p = 0.039). The coherence of the fMRI% BOLD modulation was significantly decreased in the aging subjects compared to the young subjects in the more peripheral eccentricity band from 7 to 10 deg (p = 0.029). Finally, pRF sizes were significantly increased within the 0 to 3 deg foveal representation of V1 in the aging subjects compared to the young subjects (p = 0.019). Understanding the extent of changes that occur in primary visual cortex during normal aging is essential both for understanding the normal aging process and for comparisons of healthy, aging subjects with aging patients suffering from age-related visual and cortical disorders.

Share and Cite:

Brewer, A. and Barton, B. (2012) Effects of healthy aging on human primary visual cortex. Health, 4, 695-702. doi: 10.4236/health.2012.429109.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Elliott, D.B. (1987) Contrast sensitivity decline with ageing: a neural or optical phenomenon? Ophthalmic and Physiological Optics, 7, 415-419. Hdoi:10.1111/j.1475-1313.1987.tb00771.x
[2] Gao, H. and Hollyfield, J.G. (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Investigative Ophthalmology & Visual Science, 33, 1-17.
[3] Kline, D.W., et al. (2001) Aging effects on vernier hyperacuity: A function of oscillation rate but not target contrast. Optometry & Vision Science, 78, 676-682. Hdoi:10.1097/00006324-200109000-00013
[4] Whitaker, D. and Elliott, D.B. (1992) Simulating age-related optical changes in the human eye. Documenta Ophthalmologica, 82, 307-316. Hdoi:10.1007/BF00161018
[5] Crossland, M.D., et al. (2008) The effect of age and fixation instability on retinotopic mapping of primary visual cortex. Investigative Ophthalmology & Visual Science, 49, 3734-3739. Hdoi:10.1167/iovs.07-1621
[6] Dumoulin, S.O. and Wandell, B.A. (2008) Population receptive field estimates in human visual cortex. Neuro- image, 39, 647-660. Hdoi:10.1016/j.neuroimage.2007.09.034
[7] Wandell, B.A., Dumoulin, S.O. and Brewer, A.A. (2007) Visual field maps in human cortex. Neuron, 56, 366-383. Hdoi:10.1016/j.neuron.2007.10.012
[8] Felleman, D.J. and Essen, D.C.V. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1-47. Hdoi:10.1093/cercor/1.1.1-a
[9] Baseler, H.A., et al. (2011) Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nature Neuroscience, 14, 649-655. Hdoi:10.1038/nn.2793
[10] Baseler, H.A., et al. (2002) Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nature Neuroscience, 5, 364-370. Hdoi:10.1038/nn817
[11] Smirnakis, S.M., et al. (2005) Lack of long-term cortical reorganization after macaque retinal lesions. Nature, 435, 300-307. Hdoi:10.1038/nature03495
[12] DeYoe, E.A., et al. (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences (USA), 93, 2382-2386.
[13] Dougherty, R.F., et al. (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Visual, 3, 586-598. Hdoi:10.1167/3.10.1
[14] Sereno, M.I., et al. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 268, 889-893. Hdoi:10.1126/science.7754376
[15] Brewer, A.A. and Barton, B. (2012) Visual field map organization in human visual cortex. In: Molotchnikoff, S., Ed.,Visual Cortex, InTech.
[16] Raz, N., et al. (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: Replicability of regional differences in volume. Neurobiology of Aging, 25, 377-396. Hdoi:10.1016/S0197-4580(03)00118-0
[17] Parikh, R.S., et al. (2007) Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology, 114, 921-926. Hdoi:10.1016/j.ophtha.2007.01.023
[18] Balazsi, A.G., et al. (1984) The effect of age on the nerve fiber population of the human optic nerve. American Journal of Ophthalmology, 97, 760-766.
[19] Yang, Y., et al. (2009) Aging affects response variability of V1 and MT neurons in rhesus monkeys. Brain Research, 1274, 21-27. Hdoi:10.1016/j.brainres.2009.04.015
[20] Cronin-Golomb, A., et al. (1993) Incomplete achromatopsia in Alzheimer’s disease. Neurobiology of Aging, 14, 471-477. Hdoi:10.1016/0197-4580(93)90105-K
[21] Holroyd, S. and Shepherd, M.L. (2001) Alzheimer’s disease: A review for the ophthalmologist. Survey of Ophthalmology, 45, 516-524. Hdoi:10.1016/S0039-6257(01)00193-X
[22] Tang-Wai, D.F., et al. (2004) Clinical, genetic, and neuro- pathologic characteristics of posterior cortical atrophy. Neurology, 63, 1168-1174. Hdoi:10.1212/01.WNL.0000140289.18472.15
[23] Folstein, M.F., Folstein, S.E. and McHugh, P.R. (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189-198. Hdoi:10.1016/0022-3956(75)90026-6
[24] Brainard, D.H. (1997) The psychophysics toolbox. Spatial Vision, 10, 433-436. Hdoi:10.1163/156856897X00357
[25] Pelli, D.G. (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442. Hdoi:10.1163/156856897X00366
[26] Teo, P.C., Sapiro, G. and Wandell, B.A. (1997) Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Transactions on Medical Imaging, 16, 852-863. Hdoi:10.1109/42.650881
[27] Wandell, B.A., Chial, S. and Backus, B.T. (2000) Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience, 12, 739-752. Hdoi:10.1162/089892900562561
[28] Nestares, O. and Heeger, D.J. (2000) Robust multire-solution alignment of MRI brain volumes. Magnetic Resonance in Medicine, 43, 705-715. Hdoi:10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
[29] Maes, F., et al. (1997) Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16, 187-198. Hdoi:10.1109/42.563664
[30] Boynton, G.M., et al. (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16, 4207-4221.
[31] Friston, K.J., et al. (1998) Event-related fMRI: Characterizing differential responses. Neuroimage, 7, 30-40. Hdoi:10.1006/nimg.1997.0306
[32] Brewer, A.A., et al. (2005) Visual field maps and stimulus selectivity in human ventral occipital cortex. Nature Neuroscience, 8, 1102-1129. Hdoi:10.1038/nn1507
[33] D’Esposito, M., Deouell, L.Y. and Gazzaley, A. (2003) Alterations in the BOLD fMRI signal with ageing and disease: A challenge for neuroimaging. Nature Reviews Neuroscience, 4, 863-872. Hdoi:10.1038/nrn1246
[34] D’Esposito, M., et al. (1999) The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage, 10, 6-14. Hdoi:10.1006/nimg.1999.0444

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.