Share This Article:

A wzt Mutant Burkholderia mallei Is Attenuated and Partially Protects CD1 Mice against Glanders

Abstract Full-Text HTML Download Download as PDF (Size:455KB) PP. 53-61
DOI: 10.4236/aid.2012.23008    2,539 Downloads   4,663 Views   Citations

ABSTRACT

Burkholderia mallei is the etiologic agent of glanders in solipeds and humans. Lipopolysaccharide (LPS) is a major component of cell envelop of this pathogen. O-antigen, the most external component of LPS, is a virulence factor and a protective antigen in many pathogenic bacteria. Two putative proteins named Wzm (integral membrane protein) and Wzt (hydrophilic ATP-binding protein) are believed to make up an ABC-2 transporter of B. mallei that facilitates transport of components of O-antigen from cytosol to outer-membrane. We studied the importance of wzt (encoding Wzt) to growth, LPS O-antigen profile, and pathogenicity of B. mallei. A wzt mutant strain was generated by deleting a portion of the wzt in B. mallei wild type strain ATCC 23344 by gene replacement. Compared to the wild type strain, the wzt mutant displayed slower growth in vitro and less lethality in CD1 mice when inoculated intraperitoneally. The 50% lethal doses (LD50) of the wild type and the wzt mutant strains were 5.9 × 105 and 9.1 × 105 cfu, respectively. CD1 mice inoculated with a non-lethal dose of the wzt mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with 11.2 times LD50 of the wild type strain. These findings suggest that the wzt is required for optimal in vitro growth and pathogenesis of B. mallei, and a wzt mutant protects CD1 mice against glanders.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. B. Bandara, "A wzt Mutant Burkholderia mallei Is Attenuated and Partially Protects CD1 Mice against Glanders," Advances in Infectious Diseases, Vol. 2 No. 3, 2012, pp. 53-61. doi: 10.4236/aid.2012.23008.

References

[1] E. Yabuuchi, Y. Kosako, H. Oyaizu, I. Yano, H. Hotta, Y. Hashimoto, T. Ezaki and M. Arakawa, “Proposal of Burkholderia gen. nov. and Transfer of Seven Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.,” Microbiol Immunol, Vol. 36, No. 12, 1992, pp. 1251-1275.
[2] A. Srinivasan, C. N. Kraus, D. DeShazer, P. M. Becker, J. D. Dick, L. Spacek, J. G. Bartlett, W. R. Byrne and D. L. Thomas, “Glanders in a Military Research Microbiologist,” The New England Journal of Medicine, Vol. 345, No. 4, 2001, pp. 256-258. doi:10.1056/NEJM200107263450404
[3] M. S. Redfearn, N. J. Palleroni and R. Y. Stanier, “A Comparative Study of Pseudomonas pseudomallei and Bacillus mallei,” Journal of General Microbiology, Vol. 43, No. 2, 1966, pp. 293-313. doi:10.1099/00221287-43-2-293
[4] L. Wilkinson, “Glanders: Medicine and Veterinary Medicine in Common Pursuit of a Contagious Disease,” Medical History, Vol. 25, No. 4, 1981, pp. 363-384.
[5] G. C. Whitlock, D. M. Estes and A. G. Torres, “Glanders: Off to the Races with Burkholderia mallei,” FEMS Microbiology Letters, Vol. 277, No. 2, 2007, pp. 115-122. doi:10.1111/j.1574-6968.2007.00949.x
[6] M. R. Burns, S. A. Jenkins, N. M. Vermeulen, R. Balakrishna, T. B. Nguyen, M. R. Kimbrell and S. A. David, “Structural Correlation between Lipophilicity and Lipopolysaccharide-Sequestering Activity in Spermine-Sulfonamide Analogs,” Bioorganic & Medicinal Chemistry Letters, Vol. 16, No. 24, 2006, pp. 6209-6212. doi:10.1016/j.bmcl.2006.09.026
[7] M. R. Burns, S. A. Jenkins, S. J. Wood, K. Miller and S. A. David, “Structure-Activity Relationships in Lipopolysaccharide Neutralizers: Design, Synthesis, and Biological Evaluation of a 540-Membered Amphipathic Bisamide Library,” Journal of Combinatorial Chemistry, Vol. 8, No. 1, 2006, pp. 32-43. doi:10.1021/cc0500755
[8] H. Nikaido, “Molecular Basis of Bacterial Outer Membrane Permeability Revisited,” Microbiology and Molecular Biology Reviews, Vol. 67, No. 4, 2003, pp. 593-656. doi:10.1128/MMBR.67.4.593-656.2003
[9] C. R. Raetz and C. Whitfield, “Lipopolysaccharide Endotoxins,” Annual Review of Biochemistry, Vol. 71, 2002, pp. 635-700.
[10] C. A. Schnaitman and J. D. Klena, “Genetics of Lipopolysaccharide Biosynthesis in Enteric Bacteria,” Microbiology Reviews, Vol. 57, No. 3, 1993, pp. 655-682.
[11] C. Whitfield, “Biosynthesis of Lipopolysaccharide O Antigens,” Trends in Microbiology, Vol. 3, No. 5, 1995, pp. 178-185. doi:10.1016/S0966-842X(00)88917-9
[12] M. N. Burtnick, P. J. Brett and D. E. Woods, “Molecular and Physical Characterization of Burkholderia mallei O Antigens,” Journal of Bacteriology, Vol. 184, No. 3, 2002, pp. 849-852. doi:10.1128/JB.184.3.849-852.2002
[13] G. Samuel and P. Reeves, “Biosynthesis of O-Antigens: Genes and Pathways Involved in Nucleotide Sugar Precursor Synthesis and O-Antigen Assembly,” Carbohydrate Research, Vol. 338, No. 23, 2003, pp. 2503-2519. doi:10.1016/j.carres.2003.07.009
[14] B. R. Clarke and C. Whitfield, “Molecular Cloning of the rfb Region of Klebsiella pneumoniae Serotype O1:K20: the rfb Gene Cluster Is Responsible for Synthesis of the D-Galactan I O Polysaccharide,” Journal of Bacteriology, Vol. 174, No. 14, 1992, pp. 4614-4621.
[15] H. C. Flemming and K. Jann, “Biosynthesis of the O9 Antigen of Escherichia coli. Growth of the Polysaccharide Chain,” European Journal of Biochemistry, Vol. 83, No. 1, 1978, pp. 47-52. doi:10.1111/j.1432-1033.1978.tb12066.x
[16] L. Izquierdo, N. Coderch, N. Pique, E. Bedini, M. M. Corsaro, S. Merino, S. Fresno, J. M. Tomas and M. Regue, “The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence,” Journal of Bacteriology, Vol. 185, No. 24, 2003, pp. 7213-7221. doi:10.1128/JB.185.24.7213-7221.2003
[17] L. Izquierdo, S. Merino, M. Regue, F. Rodriguez and J. M. Tomas, “Synthesis of a Klebsiella pneumoniae O-Antigen Heteropolysaccharide (O12) Requires an ABC 2 Transporter,” Journal of Bacteriology, Vol. 185, No. 5, 2003, pp. 1634-1641. doi:10.1128/JB.185.5.1634-1641.2003
[18] J. D. Bendtsen, H. Nielsen, G. von Heijne and S. Brunak, “Improved Prediction of Signal Peptides: SignalP 3.0,” Journal of Molecular Biology, Vol. 340, No. 4, 2004, pp. 783-795. doi:10.1016/j.jmb.2004.05.028
[19] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, “Basic Local Alignment Search Tool,” Journal of Molecular Biology, Vol. 215, No. 3, 1990, pp. 403-410.
[20] A. B. Bandara, D. DeShazer, T. J. Inzana, N. Sriranganathan, G. G. Schurig and S. M. Boyle, “A Disruption of ctpA Encoding carboxy-Terminal Protease Attenuates Burkholderia mallei and Induces Partial Protection in CD1 Mice,” Microbial Pathogenesis, Vol. 45, No. 3, 2008, pp. 207-216. doi:10.1016/j.micpath.2008.05.005
[21] D. DeShazer, D. M. Waag, D. L. Fritz and D. E. Woods, “Identification of a Burkholderia mallei Polysaccharide Gene Cluster by Subtractive Hybridization and Demonstration That the Encoded Capsule Is An Essential Virulence Determinant,” Microbial Pathogenesis, Vol. 30, No. 5, 2001, pp. 253-269. doi:10.1006/mpat.2000.0430
[22] R. Simon, U. Priefer and A. Puhler, “A Broad Host Range Mobilization System for in Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria,” Bio/Technology, Vol. 1, No. 9, 1983, pp. 784-791.
[23] R. L. Ulrich, K. Amemiya, D. M. Waag, C. J. Roy and D. DeShazer, “Aerogenic Vaccination with a Burkholderia mallei Auxotroph Protects against Aerosol-Initiated Glanders in Mice,” Vaccine, Vol. 23, No. 16, 2005, pp. 1986-1992. doi:10.1016/j.vaccine.2004.10.017
[24] J. F. Sambrook, E. F. Maniatis, “Molecular Cloning: A Laboratory Manual,” 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989.
[25] P. J. Brett, M. N. Burtnick, D. S. Snyder, J. G. Shannon, P. Azadi and F. C. Gherardini, “Burkholderia mallei Expresses a Unique Lipopolysaccharide Mixture That Is a Potent Activator of Human Toll-Like Receptor 4 Complexes,” Molecular Microbiology, Vol. 63, No. 2, 2007, pp. 379-390. doi:10.1111/j.1365-2958.2006.05519.x
[26] M. B. Perry, L. L. MacLean, T. Schollaardt, L. E. Bryan and M. Ho, “Structural Characterization of the Lipopolysaccharide O Antigens of Burkholderia pseudomallei,” Infection and Immunity, Vol. 63, No. 9, 1995, pp. 3348-3352.
[27] U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature, Vol. 227, No. 5259, 1970, pp. 680-685. doi:10.1038/227680a0
[28] C. M. Tsai, R. Boykins and C. E. Frasch, “Heterogeneity and Variation among Neisseria meningitidis Lipopolysaccharides,” Journal of Bacteriology, Vol. 155, No. 2, 1983, pp. 498-504.
[29] T. J. Inzana and P. Anderson, “Serum Factor-Dependent Resistance of Haemophilus influenzae Type b to Antibody to Lipopolysaccharide,” The Journal of Infectious Diseases, Vol. 151, No. 5, 1985, pp. 869-877.
[30] J. Li, C. Ryder, M. Mandal, F. Ahmed, P. Azadi, D. S. Snyder, R. D. Pechous, T. Zahrt and T. J. Inzana, “Attenuation and Protective Efficacy of an O-antigen-Deficient Mutant of Francisella tularensis LVS,” Microbiology, Vol. 153, No. Pt 9, 2007, pp. 3141-3153. doi:10.1099/mic.0.2007/006460-0
[31] R. L. Ulrich and D. DeShazer, “Type III Secretion: A Virulence Factor Delivery System Essential for the Pathogenicity of Burkholderia mallei,” Infection and Immunity, Vol. 72, No. 2, 2004, pp. 1150-1154. doi:10.1128/IAI.72.2.1150-1154.2004
[32] R. L. Ulrich, D. Deshazer, H. B. Hines and J. A. Jeddeloh, “Quorum Sensing: A Transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei,” Infection and Immunity, Vol. 72, No. 11, 2004, pp. 6589-6596.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.