Share This Article:

Development of Nanostructured Antireflection Coatings for EO/IR Sensor and Solar Cell Applications

Abstract Full-Text HTML XML Download Download as PDF (Size:2300KB) PP. 633-639
DOI: 10.4236/msa.2012.39092    6,053 Downloads   9,003 Views   Citations

ABSTRACT

Electro-optical/infrared (EO/IR) sensors and photovoltaic power sources are being developed for a variety of defense and commercial applications. One of the critical technologies that will enhance both EO/IR sensor and photovoltaic module performance is the development of high quality nanostructure-based antireflection coatings. In this paper, we review our work on advanced antireflection structures that have been designed by using a genetic algorithm and fabricated by using oblique angle deposition. The antireflection coatings are designed for the wavelength range of 250 nm to 2500 nm and an incidence angle between 00 and 400. These nanostructured antireflection coatings are shown to enhance the optical transmission through transparent windows over a wide band of interest and minimize broadband reflection losses to less than one percent, a substantial improvement over conventional thin-film antireflection coating technologies.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Sood, A. Sood, R. Welser, G. Pethuraja, Y. Puri, X. Yan, D. Poxson, J. Cho, E. Schubert, N. Dhar, D. Polla, P. Haldar and J. Harvey, "Development of Nanostructured Antireflection Coatings for EO/IR Sensor and Solar Cell Applications," Materials Sciences and Applications, Vol. 3 No. 9, 2012, pp. 633-639. doi: 10.4236/msa.2012.39092.

References

[1] A. K. Sood, R. A. Richwine, Y. R. Puri, S. Horn and R. S. Balcerak, “Design Considerations Using APD Detectors for High Resolution UV Imaging Applications,” Proceedings of SPIE, Vol. 7419, 2009, Article ID: 74190V.doi:10.1117/12.829900
[2] M. J. Cohen, T. J. Martin, J. C. Dries and M. J. Lange, “InGaAs Sensor/Focal Plane Arrays for SWIR Applications,” Proceedings of SPIE, Vol. 5406, 2004, pp. 38-45.
[3] A. K. Sood, R. A. Richwine, Y. R. Puri, N. DiLello, J. L. Hoyt, T. I. Akinwande, S. Horn, R. S. Balcerak, G. Bul- man, R. Venkatasubramanian, A. I. D’Souza, and T. G. Bramhall, “Development of Low Dark Current SiGe- Detector Arrays for Visible-NIR Imaging Sensor,” Proceedings of SPIE, Vol. 7298, 2009, Article ID: 72983D.doi:10.1117/12.820896
[4] M. Davis, J. Devitt, M. Greiner, R. Rawe, A. Timlin and D. Wade, “Advanced InSb FPA Sensor Development at CMC Electronics,” Proceedings of SPIE, Vol. 5563, 2004, pp. 62-73. doi:10.1117/12.565665
[5] A. K. Sood, R. A. Richwine, Y. R. Puri, N. K. Dhar, D. L. Polla and P. S. Wijewarnasuriya, “Multispectral EO/IR Sensor Model for Evaluating UV, Visible, SWIR, MWIR and LWIR System Performance,” Proceedings of SPIE, Vol. 7300, 2009, Article ID: 73000H.doi:10.1117/12.820899
[6] P. W. Norton, M. Kohin, M. Dovidio and B. Becker, “Commercialization of Uncooled Infrared Technology,” Proceedings of SPIE, Vol. 5563, 2004, pp. 55-61.doi:10.1117/12.565663
[7] A. K. Sood, R. A. Richwine, Y. R. Puri, D. L. Polla, N. K. Dhar, Z. L. Wang, J. M. Xu, P. S. Wijewarnasuriya, N. Goldsman, M. B. Soprano and B. Lineberry, “EO/IR Sen- sors Development Using Zinc Oxide and Carbon Nano-structures,” Proceedings of SPIE, Vol. 7318, 2009, Arti- cle ID: 731804. doi:10.1117/12.820502
[8] A. K. Sood, Y. R. Puri, L. Becker, M. Z. Tidrow, R. S. Balcerak, G. Brill, P. Wijewarnasuriya, N. Dhar, P. Boieriu, C. Fulk, S. Sivananthan, J. Yehoda and S. Finke, “Development of High-Performance Radiation-Hardened Antireflection Coatings for LWIR and Multicolor IR Focal Plane Arrays,” Proceedings of SPIE, Vol. 6206, 2006, Article ID: 620615. doi:10.1117/12.667812
[9] D. J. Poxson, M.-L. Kuo, F. W. Mont, Y.-S. Kim, X. Yan, R. E. Welser, A. K. Sood, J. Cho, S.-Y. Lin and E. F. Schubert, “High-Performance Antireflection Coatings Utilizing Nanoporous Layers,” MRS Bulletin, Vol. 36, No. 6, 2011, pp. 434-438. doi:10.1557/mrs.2011.110
[10] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical Thin-Film Materials with Low Refractive Index for Broadband Elimination of Fresnel Reflection,” Nature Photonics, Vol. 1, 2007, pp. 176-179.
[11] M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim and E. Fred Schubert, “Design of Multilayer Antireflection Coatings Made from Co-Sputtered and Low-Refractive-Index Materials by Genetic Algorithm,” Optics Express, Vol. 16, No. 8, 2008, pp. 5290-5298.doi:10.1364/OE.16.005290
[12] S. Chhajed, D. J. Poxson, X. Yan, J. H. Cho, E. F. Schubert, R. E. Welser, A. K. Sood and J. K. Kim, “Nano- structured Multi-Layer Tailored-Refractive Index Anti- Reflection Coating for Glass with Broadband and Omni- Directional Characteristics,” Applied Physics Express, Vol. 4, 2011, Article ID: 052503.
[13] R. E. Welser, A. W. Sood, A. K. Sood, D. J. Poxson, S. Chhajed, J. Cho, E. F. Schubert, D. L. Polla and N. K. Dhar, “Ultra-High Transmittance through Nanostructured-Coated Glass for Solar Cell Applications,” Proceedings of SPIE, Vol. 8035, 2011, Article ID: 80350X.doi:10.1117/12.888129
[14] R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, X. Yan, D. J. Poxson, J. Cho, E. Fred Schubert and J. L. Harvey, “Broadband Nanostructured Antireflection Coating on Glass for Photovoltaic Applications,” 38th IEEE Photovoltaic Specialist Conference, Austin, 3-8 June 2012.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.