Share This Article:

Light-Absorbing Products Form during the Aqueous Phase Reaction of Phenolic Compounds in the Presence of Nitrate and Nitrite with UV Illumination

Abstract Full-Text HTML Download Download as PDF (Size:1335KB) PP. 13-21
DOI: 10.4236/ojap.2012.12002    5,196 Downloads   9,816 Views   Citations

ABSTRACT

Phenolic compounds are emitted into earth’s atmosphere through industry and biomass burning events. These compounds may react in the gas or particle phase to form additional airborne pollutants. In this work, the aqueous phase chemical reactions of syringol, guaiacol, and catechol were studied in the presence of nitrate (NO-3 ) or nitrite ( NO-2) with and without UV illumination. The reactions were found to yield light absorbing products and electrospray ionization mass spectrometry (ESI-MS) experiments indicate some of the compounds formed may be the nitrated analogues of the starting organic compounds. However, infrared absorption data suggests the reaction products are composed of a complicated mixture. This suggests additional reactions occur simultaneously in solution. Treatment of the isolated reaction products with ozone (O3) suggest they are unstable and will eventually chemically decompose if/when formed in the atmosphere.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Tang and J. Thompson, "Light-Absorbing Products Form during the Aqueous Phase Reaction of Phenolic Compounds in the Presence of Nitrate and Nitrite with UV Illumination," Open Journal of Air Pollution, Vol. 1 No. 2, 2012, pp. 13-21. doi: 10.4236/ojap.2012.12002.

References

[1] D. V. Spracklen, J. L. Jimenez, K. S. Carslaw, D. R. Wors- nop, M. J. Evans, G. Mann, Q. Zhang, M. R. Canagaratna, J. Allan, H. Coe, G. McFiggans, A. Rap and P. Forster, “Aerosol Mass Spectrometer Constraint on the Global Secondary Organic Aerosol Budget,” Atmospheric Che- mistry and Physics, Vol. 11, 2011, pp. 12109-12136. doi:10.5194/acp-11-12109-2011
[2] B. Graham, O. L. Mayol-Bracero, P. Guyon, G. C. Roberts, S. Decesari, M. C. Facchini, P. Artaxo, W. Maenhaut, P. K?ll and M. O. Andreae, “Water-Soluble Organic Com- pounds in Biomass Burning Aerosols over Amazonia 1. Characterization by NMR and GC-MS,” Journal of Geophysical Research, Vol. 107, No. 8047, 2002, 16 p. doi:10.1029/2001JD000336
[3] A. Gelencser, A. Hoffer, G. Kiss, E. Tombacz, R. Kurdi and L. Bencze, “In-Situ Formation of Light Absorbing Organic Matter in Cloud Water,” Journal of Atmospheric Chemistry, Vol. 45, No. 1, 2003, pp. 25-33. doi:10.1023/A:1024060428172
[4] A. Hoffer, G. Kiss, M. Blazsó and A. Gelencsér, “Chemical Characterization of Humic-Like Substances (HULIS) Formed from a Lignin-Type Precursor in Model Cloud Water,” Geophysical Research Letters, Vol. 31, 2004, Ar- ticle ID: L06115. doi:10.1029/2003GL018962
[5] D. O. De Haan, A. L. Corrigan, K. W. Smith, D. R. Stroik, J. T. Turley, F. E. Lee, M. A. Tolbert, J. L. Jimenez, K. E. Cordova and G. R. Ferrell, “Secondary Organic Aerosol- Forming Reactions of Glyoxal with Amino Acids,” Environmental Science & Technology, Vol. 43, No. 8, 2009, pp. 2818-2824. doi:10.1021/es803534f
[6] D. L. Bones, D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper and S. A. Nizkorodov, “Appearance of Strong Absorbers and Fluorophores in Limonene-O3 Secondary Organic Aerosol due to NH4+ Mediated Chemical Aging over Long Time Scales,” Journal of Geophysical Research, Vol. 115, 2010, Article ID: D05203. doi:10.1029/2009JD012864
[7] J. L. Chang and J. E. Thompson, “Characterization of Colored Oligomeric Products Formed during Irradiation of Aqueous Solutions Containing H2O2 and Phenolic Compounds,” Atmospheric Environment, Vol. 44, No. 4, 2010, pp. 541-551. doi:10.1016/j.atmosenv.2009.10.042
[8] Y. Liu, T. Tritscher, A. P. Praplan, P. F. DeCarlo, B. Temime-Roussel, E. Quivet, N. Marchand, J. Dommen, U. Baltensperger and A. Monod, “Aqueous Phase Processing of Secondary Organic Aerosols,” Atmospheric Environment, Vol. 11, 2011, pp. 21489-21532. doi:10.5194/acpd-11-21489-2011
[9] H. Tokiwa and Y. Ohnishi, “Mutagenicity and Carcinogenicity of Nitroarenes and Their Sources in the Environment,” CRC Critical Reviews in Toxicology, Vol. 17, No. 1, 1986, pp. 23-60. doi:10.3109/10408448609037070
[10] WHO, “World Health Statistics Annual,” World Health Organization, Geneva, 1995.
[11] T. Enya and H. Suzuki, “3-Nitrobenzanthrone, a Powerful Bacterial Mutagen and Suspected Human Carcinogen Found in Diesel Exhaust and Airborne Particulates,” Environmental Science & Technology, Vol. 31, No. 10, 1997, pp. 2772-2776. doi:10.1021/es961067i
[12] K. Bekki, H. Takigami, G. Suzuki, N. Tang and K. Hayakawa, “Evaluation of Toxic Activities of Polycyclic Aromatic Hydrocarbon Derivatives Using in Vitro Bioassays,” Journal of Health Science, Vol. 55, No. 4, 2009, pp. 601- 610. doi:10.1248/jhs.55.601
[13] M. Z. Jacobson, “Isolating Nitrated and Aromatic Aerosols and Nitrated Aromatic Gases as Sources of Ultraviolet Light Absorption,” Journal of Geophysical Research, Vol. 104, No. D3, 1999, 3527-3542. doi:10.1029/1998JD100054
[14] X. Zhang, Y. H. Lin, J. D. Surratt, P. Zotter, A. S. H. Prevot and R. J. Weber, “Light-Absorbing Soluble Organic Aerosol in Los Angeles and Atlanta: A Contrast in Secondary Organic Aerosol,” Geophysical Research Letters, Vol. 38, 2011, Article ID: L21810. doi:10.1029/2011GL049385
[15] L. R. Mazzoleni, B. M. Ehrmann, X. Shen, A. G. Marshall and J. L. Collett, “Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,” Environmental Science & Technology, Vol. 44, No. 10, 2010, pp. 3690-3697. doi:10.1021/es903409k
[16] K. L. Hayden, A. M. Macdonald, W. Gong, D. Toom-Sauntry, K. G. Anlauf, A. Leithead, S.-M. Li, W. R. Leaitch and K. Noone, “Cloud Processing of Nitrate,” Journal of Geo- physical Research, Vol. 113, 2003, Article ID: D18201. doi:10.1029/2007JD009732
[17] D. Vione, V. Maurino, C. Minero, E. Pelizzetti, M. A. J. Harrison, R. I. Olariuc and C. Arsene, “Photochemical Reactions in the Tropospheric Aqueous Phase and on Particulate Matter,” Chemical Society Reviews, Vol. 35, No. 5, 2006, pp. 441-453.
[18] G. Lammel and J. N. Cape, “Nitrous Acid and Nitrite in the Atmosphere,” Chemical Society Reviews, Vol. 25, No. 5, 1996, pp. 361-369. doi:10.1039/cs9962500361
[19] C. Anastasio and K. G. McGregor, “Chemistry of Fog Waters in California’s Central Valley: 1. In Situ Photoformation of Hydroxyl Radical and Singlet Molecular Oxygen,” Atmospheric Environment, Vol. 35, No. 6, 2001, pp. 1079-1089. doi:10.1016/S1352-2310(00)00281-8
[20] W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass and B. R. T. Simoneit, “Sources of Fine Organic Aerosol: 9. Pine, Oak, and Synthetic Log Combustion in Residential Fireplaces,” Environmental Science & Technology, Vol. 32, No. 1, 1998, pp. 13-22. doi:10.1021/es960930b
[21] T. B. Jordan, A. J. Seen and G. E. Jacobsen, “Levoglucosan as an Atmospheric Tracer for Woodsmoke,” Atmospheric Environment, Vol. 40, No. 27, 2006, pp. 5316- 5321. doi:10.1016/j.atmosenv.2006.03.023
[22] M. C. Valsania, F. Fasano, S. D. Richardson and M. Vincenti, “Investigation of the Degradation of Cresols in the Treatments with Ozone,” Water Research, Vol. 46, No. 8, 2012, pp. 2795-2804. doi:10.1016/j.watres.2012.02.040

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.