Photocatalytic Degradation of 2,6-Dichlorophenol in Aqueous Phase Using Titania as a Photocatalyst


The paper includes the studies on photocatalytic degradation of 2,6-DCP in aqueous phase using titania (PC-105) as a photocatalyst. The degradation experiments were carried out by irradiating the aqueous suspensions of the model compound in the presence of photocatalysts under UV light. The rate of degradation was estimated from residual concentration spectrophotometrically. Various parameters affecting the degradation process viz. catalyst dose, pH, initial substrate concentration and time were investigated in order to obtain their optimum values. The maximum degradation of 2,6-DCP was achieved with 1.25 g/L catalyst dose at pH-4. The disappearance of 2,6-DCP obeyed pseudo-first order kinetics and the rate constant value was calculated to be 4.78 × 10-4s-1.

Share and Cite:

S. Kansal and M. Chopra, "Photocatalytic Degradation of 2,6-Dichlorophenol in Aqueous Phase Using Titania as a Photocatalyst," Engineering, Vol. 4 No. 8, 2012, pp. 416-420. doi: 10.4236/eng.2012.48055.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] EPA, 2002.
[2] K. Hayward, “Drinking Water Contaminant Hit-List for US EPA,” Water 21, September-October 1998.
[3] L. H. Keith and W. A. Telliard, “Priority Polluants—A Perspective View,” Environmental Science & Technology, Vol. 13, No. 4, 1979, pp. 416-423.
[4] The European Parliament and of the Council, “EC Decision 2455/2001/EC of the European Parliament and of the Council of 20 November 2001: Establishing the List of Priority Substances in the Field of Water Policy and Amending Directive 2000/60/EC,” The European Parliament and of the Council, 2001.
[5] K. Abe and K. Tanaka, “Fe3+ and UV-Enhanced Ozonation of Chlorophenolic Compounds in Aqueous Medium,” Chemosphere, Vol. 35, No. 12, 1997, pp. 2837-2847. doi:10.1016/S0045-6535(97)00344-5
[6] S. K. Kansal, M. Singh and D. Sud, “Optimization of Photocatalytic Process Parameters for the Degradation of 2,4,6-Trichlorophenol in Aqueous Solutions,” Chemical Engineering Communications, Vol. 194, No. 6, 2007, pp. 787-802. doi:10.1080/00986440701193803
[7] T. Pandiyan, O. M. Rivas, J. O. Martinez, G. B. Amezcua and M. A. M. Carrillo, “Comparison of Methods for the Photochemical Degradation of Chlorophenols,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 146, No. 3, 2002, pp. 149-155. doi:10.1016/S1010-6030(01)00606-2
[8] C. Sharma, S. Mohanty, S. Kumar and N. J. Rao, “Gas Chromatographic Analysis of Chlorophenolic, Resin and Fatty Acids in Effluents from Bleaching Processes of Agricultural Residues,” International Journal of Environmental Analytical Chemistry, Vol. 64, No. 4, 1996, pp. 289-300. doi:10.1080/03067319608028350
[9] S. K. Kansal, M. Singh and D. Sud, “Parametric Optimization of Photocatalytic Degradation of Catechol in Aqueous Solutions by Response Surface Methodology,” Indian Journal of Chemical Technology, Vol. 14, No. 2, 2007, pp. 145-153.
[10] H. K. Veschueren, “Handbook of Environmental Data on Organic Chemicals,” VNR, New York, 1983.
[11] J. Folke and J. Birklund, “Danish Coastal Water Levels of 2,3,4,6-Tetrachlorophenol, Pentachlorophenol, and Total Organohalogens in Blue Mussels (Mytilus edulis),” Chemosphere, Vol. 15, No. 7, 1986, pp. 895-900. doi:10.1016/0045-6535(86)90054-8
[12] S. Mishra, V. Meda, A. K. Dalai, D. W. McMartin, J. V. Headley and K. M. Peru, “Photocatalysis of Naphthenic Acids in Water,” Journal of Water Resource and Protection, Vol. 2, No. 7, 2010, pp. 644-650. doi:10.4236/jwarp.2010.27074
[13] S. K. Kansal, G. Kaur and S. Singh, “Studies on Photocatalytic Degradation of 2,3-Dichlorophenol Using Different Oxidants in Aqueous Solutions,” Reaction Kinetics and Catalysis Letters, Vol. 98, No. 1, 2009, pp. 177-186. doi:10.1007/s11144-009-0058-5.
[14] Y. Ku and C. B. Hsieh, “Photocatalytic Decomposition of 2,4-Dichlorophenol in Aqueous TiO2 Suspensions,” Water Research, Vol. 26, No. 11, 1992, pp. 1451-1456. doi:10.1016/0043-1354(92)90064-B
[15] J. Bandara, J. A. Mielczarski, A. Lopez and J. Kiwi, “Sensitized Degradation of Chlorophenols on Iron Oxides Induced by Visible Light: Comparison with Titanium Oxide,” Appied Catalysis B: Environmental, Vol. 34, No. 4, 2001, pp. 321-333.
[16] S. Antonaraki, E. Androulaki, D. Dimotikali, A. Hiskia and E. Papaconstantinou, “Photolytic Degradation of All Chlorophenols with Polyoxometallates and H2O2,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 148, No. 1-3, 2002, pp. 191-197. doi:10.1016/S1010-6030(02)00042-4
[17] P. Saritha, C. Aparna, V. Himabindu and Y. Anjaneyulu, “Comparison of Various Advanced Oxidation Processes for the Degradation of 4-Chloro-2-nitrophenol,” Journal of Hazardous Materials, Vol. 149, No. 3, 2007, pp. 609614. doi:10.1016/j.jhazmat.2007.06.111
[18] S. K. Kansal, N. Kaur and S. Singh, “Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts,” Nanoscale Research Letters, Vol. 4, No. 7, 2009, pp. 709-716. doi:10.1007/s11671-009-9300-3
[19] A. Akyol, H. C. Yatmaz and M. Bayramoglu, “Photocatalytic Decolorization of Remazol Red RR in Aqueous ZnO Suspensions,” Applied Catalysis B: Environmental, Vol. 54, No. 1, 2004, pp. 19-24. doi:10.1016/j.apcatb.2004.05.021
[20] M. S. T. Gonclaves, A. M. F. Oliveira-Campose, E. M. M. S. Pinto, P. M. S. Plasencia and M. J. R. P. Queiroz, “Photochemical Treatment of Solutions of Azo Dyes Containing TiO2,” Chemosphere, Vol. 39, No. 5, 1999, pp. 781786.
[21] A. Mills, R. H. Davies and D. Worsley, “Water Purification by Semiconductor Photocatalysis,” Chemical Society Reviews, Vol. 22, No. 6, 1993, pp. 417-425. doi:10.1039/cs9932200417
[22] A. Mills, S. Morris and R. Davies, “Photomineralisation of 4-Chlorophenol Sensitised by Titanium Dioxide: A Study of the Intermediates,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 70, No. 2, 1993, pp. 183-191. doi:10.1016/1010-6030(93)85040-F
[23] U. Stafford, K. A. Gray and P. V. Kamat, “Radiolytic and TiO2-Assisted Photocatalytic Degradation of 4-Chlorophenol: A Comparative Study,” Journal of Physical Chemistry, Vol. 98, No. 25, 1994, pp. 6343-6351. doi:10.1021/j100076a019

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.