Microstructures and Photovoltaic Properties of Polysilane/C60-Based Solar Cells

DOI: 10.4236/msa.2012.38079   PDF   HTML     4,832 Downloads   6,975 Views   Citations

Abstract

Polysilane/C60-based solar cells were fabricated and investigated. Two-types of devices with bulk heterojunction and heterojunction structures were examined and characterized. Addition of silicon-based polymer to the organic solar cells improved the conversion efficiency by wide optical absorption and high carrier mobility. Microstructures of the solar cells were investigated by using X-ray diffraction and transmission electron microscopy. Energy levels in the present solar cells were discussed.

Share and Cite:

A. Kawashima, T. Oku, A. Suzuki, K. Kikuchi and S. Kikuchi, "Microstructures and Photovoltaic Properties of Polysilane/C60-Based Solar Cells," Materials Sciences and Applications, Vol. 3 No. 8, 2012, pp. 557-561. doi: 10.4236/msa.2012.38079.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. J. A. Koster, V. D. Mihailetchi and P. W. M. Blom, “Ultimate Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells,” Applied Physics Letters, Vol. 88, No. 9, 2006, Article ID: 093511. doi:10.1063/1.2181635
[2] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene,” Science, Vol. 258, No. 5087, 1992, pp. 1474-1476. doi:10.1126/science.258.5087.1474
[3] T. Oku, T. Noma, A. Suzuki, K. Kikuchi and S. Kikuchi, “Fabrication and Characterization of Fullerene/Porphyrin Bulk Heterojunction Solar Cells,” Journal of Physics and Chemistry of Solids, Vol. 71, No. 4, 2010, pp. 551-555. doi:10.1016/j.jpcs.2009.12.034
[4] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Mor- phology,” Advanced Functional Materials, Vol. 15, No. 10, 2005, pp. 1617-1622. doi:10.1002/adfm.200500211
[5] M. Granstr?m, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson and R. H. Friend, “Laminated Fabrication of Polymeric Photovoltaic Diodes,” Nature, Vol. 395, No. 6699, 1998, pp. 257-260. doi:10.1038/26183
[6] T. Oku, A. Takeda, A. Nagata, T. Noma, A. Suzuki and K. Kikuchi, “Fabrication and Characterization of Fullerene- Based Bulk Heterojunction Solar Cells with Porphyrin, CuInS2, Diamond and Exciton-Diffusion Blocking Layer,” Energies, Vol. 3, No. 4, 2010, pp. 671-685. doi:10.3390/en3040671
[7] G. Yu and A. J. Heeger, “Charge Separation and Photovoltaic Conversion in Polymer Composites with Internal Donor/Acceptor Heterojunctions,” Journal of Applied Physics, Vol. 78, No. 7, 1995, pp. 4510-4515. doi:10.10631/1.359792
[8] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Advanced Functional Materials, Vol. 13, No. 1, 2003, pp. 85-88. doi:10.1002/adfm.200390011
[9] Y. Hayashi, I. Yamada, S. Takagi, A. Takasu, T. Soga and T. Jimbo, “Influence of Structure and C60 Composition on Properties of Blends and Bilayers of Organic Do- nor-Acceptor Polymer/C60 Photovoltaic Devices,” Japanese Journal of Applied Physics, Vol. 44, No. 3, 2005, pp. 1296-1300. doi:10.1143/JJAP.44.1296
[10] T. Oku, N. Kakuta, A. Kawashima, K. Nomura, R. Motoyoshi, A. Suzuki, K. Kikuchi and G. Kinoshita, “Formation and Characterization of Bulk Hetero-Junction Solar Cells Using C60 and Perylene,” Materials Transactions, Vol. 49, No. 11, 2008, pp. 2457-2460. doi:10.2320/matertrans.MB200807
[11] M. A. Abkowitz, “Electronic Transport in Polymers,” Philosophical Magazine Part B, Vol. 65, No. 4, 1992, pp. 817-829. doi:10.1080/13642819208204922
[12] F. Kajzar, J. Messier and C. Rosilio, “Nonlinear Optical Properties of Thin Films of Polysilane,” Journal of Applied Physics, Vol. 60, No. 9, 1986, pp. 3040-3044. doi:10.1063/1.337759
[13] C. H. Lee, G. Yu, N. S. Sariciftci, D. Moses, K. Pakbaz, C. Zhang, A. J. Heeger and F. Wudl, “Sensitization of the Photoconductivity of Conducting Polymers by C60: Pho- toinduced Electron Transfer,” Physical Review B, Vol. 48, No. 20, 1993, pp. 15425-15433. doi:10.1103/PhysRevB.48.15425
[14] J. Lee, C. Seoul, J. Park and J. H. Youk, “Fullerene/ Poly(Methylphenylsilane) (PMPS) Organic Photovoltaic Cells,” Synthetic Metals, Vol. 145, No. 1, 2004, pp. 11-14. doi:10.1016/j.synthmet.2004.04.022
[15] J. Feng, J. Han and X. Zhao, “Synthesis of CuInS2 Quantum Dots on TiO2 Porous Films by Solvothermal Method for Absorption Layer of Solar Cells,” Progress in Organic Coatings, Vol. 64, No. 2-3, 2009, pp. 268-273. doi:10.1016/j.porgcoat.2008.08.022
[16] N. G. Park, M. G. Kang, K. S. Ryu, K. M. Kim and S. H. Chang, “Photovoltaic Characteristics of Dye-Sensitized Surface-Modified Nanocrystalline SnO2 Solar Cells,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 161, No. 2-3, 2004, pp. 105-110. doi:10.1016/S1010-6030(03)00280-6
[17] C. W. Chu, V. Shrotriya, G. Li and Y. Yanga, “Tuning Acceptor Energy Level for Efficient Charge Collection in Copper-Phthalocyanine-Based Organic Solar Cells,” Applied Physics Letters, Vol. 88, No. 26, 2006, pp. 153504- 153506. doi:10.1063/1.2194207
[18] L. Lozzi, S. Santucci and S. La Rosa, “Photoemission Investigation on Copper Phthalocyanine: Fullerene Blend Film,” Applied Physics Letters, Vol. 88, No. 13, 2006, pp. 133505-133507. doi:10.1063/1.2186742
[19] T. Osasa, S. Yamamoto, Y. Iwasaki and M. Matsumura, “Photocarrier Generation in Organic Thin-Film Solar Cells with an Organic Heterojunction,” Solar Energy Materials and Solar Cells, Vol. 90, No. 10, 2006, pp. 1519-1526. doi:10.1016/j.solmat.2005.10.016
[20] Y. Terao, H. Sasabe and C. Adachi, “Correlation of Hole Mobility, Exciton Diffusion Length, and Solar Cell Characteristics in Phthalocyanine/Fullerene Organic Solar Cells,” Applied Physics Letters, Vol. 90, No. 10, 2007, pp. 103515-103517. doi:10.1063/1.2711525
[21] M. A. Green, K. Emery, D. L. King, Y. Hishikawa and W. Warta, “Solar Cell Efficiency Tables (Version 28),” Progress in Photovoltaics: Research and Applications, Vol. 14, No. 5, 2006, pp. 455-461. doi:10.1002/pip.720
[22] J. Xue, B.?P. Rand, S. Uchida and S.?R. Forrest, “A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell,” Advanced Materials, Vol. 17, No. 1, 2005, pp. 66- 71. doi:10.1002/adma.200400617
[23] P. Sullivan, S. Heutz, S. M. Schultes and T. S. Jones, “Influence of Codeposition on the Performance of CuPc- C60 Heterojunction Photovoltaic Devices,” Applied Physics Letters, Vol. 84, No. 7, 2004, pp. 1210-1212. doi:10.1063/1.1643549
[24] B. P. Rand, J. Genoe, P. Heremans and J. Poortmans, “Solar Cells Utilizing Small Molecular Weight Organic Semiconductors,” Progress in Photovoltaics: Research and Applications, Vol. 15, No. 8, 2007, pp. 659-676. doi:10.1002/pip.788
[25] V. Tripathi, D. Datta, G. S. Samal, A. Awasthi and S. Kumar, “Role of Exciton Blocking Layers in Improving Efficiency of Copper Phthalocyanine Based Organic Solar Cells,” Journal of Non-Crystalline Solids, Vol. 354, No. 19-25, 2008, pp. 2901-2904. doi:10.1016/j.jnoncrysol.2007.10.098

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.