Share This Article:

Disruption of Drug Effects (Dopamine, Nicotine, Pilocarpine, κ-Opioid) in Planarians by UV Light

Abstract Full-Text HTML XML Download Download as PDF (Size:180KB) PP. 358-363
DOI: 10.4236/pp.2012.33048    4,101 Downloads   7,615 Views   Citations

ABSTRACT

Based on previous work, it has been hypothesized that the energetics of ultraviolet (UV) light disrupts effects induced by receptor-binding ligands. If this hypothesis is true, then UV light should (i) disrupt a broad variety of endpoints and (ii) disrupt effects produced by ligands that bind to diverse receptor types. This was tested directly in the present study by using ligands selective for four different receptors (one ionotropic, three metabotropic) and three different behavioral endpoints. The selective dopamine D2 receptor antagonist (–)sulpiride (0.1 uM) dose-relatedly decreased spontaneous locomotor velocity, the selective nicotinic acetylcholine receptor agonist nicotine (1, 3, 5 mM) and the selective muscarinic acetylcholine receptor agonist pilocarpine (20, 30, 50 mM) induced seizure-like activity, and the selective-opioid receptor agonist U-50,488H (10 uM) produced physical dependence (manifested as abstinence-induced withdrawal) in planarian models. Each of these diverse ligand and receptor-mediated effects were attenuated by UV light (254 nm = 7.83 × 10–19 J = 4.89 eV). These findings provide further evidence that UV light disrupts ligand-receptor mediated interactions and that UV light might provide a useful tool for examining drug-receptor interactions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. B. Raffa, C. S. Tallarida, A. Choudhry, N. Sanni-Adam, S. McGonigle, M. Baron, Z. L. Chen, S. M. Rawls and R. J. Tallarida, "Disruption of Drug Effects (Dopamine, Nicotine, Pilocarpine, κ-Opioid) in Planarians by UV Light," Pharmacology & Pharmacy, Vol. 3 No. 3, 2012, pp. 358-363. doi: 10.4236/pp.2012.33048.

References

[1] R. F. Furchgott, W. Sleator, M. W. McCaman and J. Elchlepp, “Relaxation of Arterial Strips by Light, and the Influence of Drugs on This Photodynamic Effect,” Journal of Pharmacology and Experimental Therapeutics, Vol. 113, 1955, pp. 22-23.
[2] R. F. Furchgott, S. J. Ehrreich and E. Greenblatt, “The Photoactivated Relaxation of Smooth Muscle of Rabbit Aorta,” Journal of General Physiology, Vol. 44, 1961, pp. 499-519. doi:10.1085/jgp.44.3.499
[3] L. S. Jacob and R. J. Tal-larida, “Further Studies on the Action of Ultraviolet Light on Vascular Smooth Muscle: Effect of Partial Irreversible Receptor Blockade” Archives Internationales Pharmaco-dynamie et de Thérapie, Vol. 225, 1977, pp. 166-176.
[4] R. B. Raffa, M. J. Robinson and R. J. Tal-larida, “Ultra-violet Light-Induced Photorelaxation of Agonist-Contracted Rabbit Aorta: Further Characterization and the Estimation of Drug-Receptor Rate Constants,” Drug Development Research, Vol. 5, No. 4, 1985, pp. 359-369. doi:10.1002/ddr.430050409
[5] R. J. Tallarida, R. W. Sevy, C. Harakal and M. H. Loughnane, “Characteristics of Photorelaxation in Vascular Smooth Muscle: Evidence Supporting the Hypothesis of Drug-Receptor Equilibrium Disturbance,” IEEE Transactions on Biomedical Engineering, Vol. 22, No. 6, 1975, pp. 493-501. doi:10.1109/TBME.1975.324471
[6] R. J. Tallarida, O. L. Laskin and L. S. Jacob, “Perturbation of Drug Re-ceptor Equilibrium in the Presence of Competitive Blocking Agents,” Journal of Theoretical Biology, Vol. 61, No. 1, 1979, pp. 211-219. doi:10.1016/0022-5193(76)90115-6
[7] R. F. Furchgott and P. Bursztyn, “Comparison of Dissociation Constants and Relative Efficacies of Selected Agonists Acting on Parasympathetic Receptors,” Annals of the New York Academy of Sciences, Vol. 144, 1967, pp. 882-899. doi:10.1111/j.1749-6632.1967.tb53817.x
[8] Y. Chang, Y. Xie and D. S. Weiss, “Positive Allosteric Modulation by Ultraviolet Irradiation on GABAA, But Not GABAC, Receptors Expressed in Xenopus Oocytes,” Journal of Physiology, Vol. 536, No. 2, 2001, pp. 471- 478. doi:10.1111/j.1469-7793.2001.0471c.xd
[9] E. I. Budovskii and G. V. Kostiuk, “Principles of Selective Inactivation of the Virus Genome. IV. The Effect of UV-Irradiation of Phage MS2 on Its Binding with Anti-MS2-Immunoglobulins,” Molekulyarnaya Biologiya, Vol. 19, 1985, pp. 1216-1222.
[10] R. B. Raffa and S. M. Rawls, “Planaria: A Model for Drug Action and Abuse,” Landes Bioscience, Austin, 2008.
[11] S. Algeri, A. Ca-rolei, P. Ferretti, C. Gallone, G. Palladini and G. Venturini, “Effects of Dopaminergic Agents on Monoamine Levels and Motor Behaviour in Planaria,” Comparative Bi-ochemistry and Physiology C, Vol. 74, No. 1, 1983, pp. 27-29. doi:10.1016/0742-8413(83)90142-1
[12] J. H. Welsh and L. D. Williams, “Monoamine-Containing Neurons in Planaria,” Journal of Comparative Neurology, Vol. 138, No. 1, 1970, pp. 103-115. doi:10.1002/cne.901380108
[13] G. Venturini, A. Carolei, G. Palladini, V. Margotta and M. G. Lauro, “Ra-dioimmunological and Immunocytochemical Demonstration of Met-Enkephalin in Planaria,” Comparative Biochemistry and Physiology C, Vol. 74, No. 1, 1983, pp. 23-25. doi:10.1016/0742-8413(83)90141-X
[14] A. Carolei, V. Margotta and G. Palladini, “Proposal of a New Model with Dopaminergic-Cholinergic Interactions for Neuro-pharmacological Investigations,” Neuropsychobiology, Vol. 1, No. 6, 1975, pp. 355-364. doi:10.1159/000117512
[15] G. Palladini, S. Ruggeri, F. Stocchi, M. F. De Pandis, G. Venturini and V. Margotta, “A Pharmacological Study of Cocaine Activity in Planaria,” Comparative Biochemistry and Physiology C, Vol. 115, No. 1, 1996, pp. 41-45. doi:10.1016/S0742-8413(96)00053-9
[16] F. Passarelli, A. Merante, F. E. Pontieri, V. Margotta, G. Venturini and G. Palladini, “Opioid-Dopamine Interaction in Planaria: A Behavioral Study,” Comparative Bio-chemistry and Physiology C, Vol. 124, No. 1, 1999, pp. 51-55.doi:10.1016/S0742-8413(99)00048-1
[17] G. Venturini, F. Stocchi, V. Margotta, S. Ruggieri, D. Bravi, P. Bellantuono and G. Palladini, “A Pharmacological Study of Dopaminergic Receptors in Planaria,” Neuro-pharmacology, Vol. 28, No. 12, 1989, pp. 1377- 1382. doi:10.1016/0028-3908(89)90013-0
[18] R. B. Raffa and A. F. Martley, “Amphetamine-Induced Increase in Planarian Locomotor Activity and Block by UV Light,” Brain Research, Vol. 1031, No. 1, 2005, pp. 138-140. doi:10.1016/j.brainres.2004.10.051
[19] S. M. Rawls, T. Thomas, M. Adeola, T. Patil, N. Ray- mondi, A. Poles, M. Loo and R. B. Raffa, “Topiramate Antagonizes NMDA- and AMPA-Induced Seizure-Like Activity in Planarians,” Pharmacology Biochemistry and Behavior, Vol. 93, 2009, pp. 363-367. doi:10.1016/j.pbb.2009.05.005
[20] R. B. Raffa and J. M. Valdez, “Cocaine Withdrawal in Planaria,” European Journal of Pharmacology, Vol. 430, No. 1, 2001, pp. 143-145. doi:10.1016/S0014-2999(01)01358-9
[21] R. B. Raffa, G. W. Stagliano and S. Umeda, “kappa-Opioid Withdrawal in Planaria,” Neuroscience Letters, Vol. 349, No. 3, 2003, pp. 139-142. doi:10.1016/S0304-3940(03)00814-0
[22] S. Umeda, G. W. Stagliano and R. B. Raffa, “Cocaine and Kappa-Opioid Withdrawal in Planaria Blocked by D-, But Not L-, Glucose,” Brain Research, Vol. 1018, No. 2, 2004, pp. 181-185. doi:10.1016/j.brainres.2004.05.057
[23] R. B. Raffa and P. Desai, “Description and Quantification of Cocaine Withdrawal Signs in Planaria,” Brain Research, Vol. 1032, No. 1-2, 2005, pp. 200-202. doi:10.1016/j.brainres.2004.10.052
[24] R. B. Raffa, L. J. Holland and R. J. Schulingkamp, “Quantitative Assessment of Dopamine D2 Antagonist Activity Using Invertebrate (Planaria) Locomotion as a Functional End-point,” Journal of Pharmacological and Toxicological Methods, Vol. 45, No. 3, 2001, pp. 223-226. doi:10.1016/S1056-8719(01)00152-6
[25] R. B. Raffa, J. M. Valdez, L. J. Holland and R. J. Schulingkamp, “Energy-Dependent UV Light-Induced Disruption of (–)Sulpiride Antagonism of Dopamine,” European Journal of Pharmacology, Vol. 406, No. 3, 2000, pp. R11-12. doi:10.1016/S0014-2999(00)00730-5
[26] R. B. Raffa, K. E. Finno, C. S. Tallarida and S. M. Rawls, “Topiramate-Antagonism of L-Glutamate-Induced Par-oxysms in Planarians,” European Journal of Pharmacology, Vol. 649, No. 1-3, 2010, pp. 150-153. doi:10.1016/j.ejphar.2010.09.021
[27] R. J. Tallarida, R. W. Sevy and C. Harakal, “Relaxation Methods for the Determination of Drug Receptor Affini- ties,” Bulletin of Mathematics and Biophysics, Vol. 32, No. 1, 1970, pp. 65-69. doi:10.1007/BF02476793
[28] R. J. Tallarida, O. L. Laskin and L. S. Jacob, “Perturba- tion of Drug Re-ceptor Equilibrium in the Presence of Competitive Blocking Agents,” Journal of Theoretical Biology, Vol. 61, No. 1, 1976, pp. 211-219. doi:10.1016/0022-5193(76)90115-6
[29] P. Ribeiro, F. El-Shehabi, and N. Patocka, “Classical Transmitters and Their Receptors in Flatworms,” Parasitology, Vol. 131, Suppl. 1, 2005, pp. S19-S40. doi:10.1017/S0031182005008565
[30] G. Palladini, V. Margotta, A. Carolei, F. Chiarini, M. Del Piano, G. M. Lauro, L. Medolago-Albani and G. Ventur- ini, “The Ce-rebrum of Dugesia Gonocephala s.1. Platyhelminthes, Turbellaria, Tricladida. Morphological and Functional Observations” Journal für Hirnforschung Vol. 24, 1983, pp. 165-172.
[31] F. R. Buttarelli, F. E. Pontieri, V. Margotta and G. Palladini, “Acetylcholine/Dopamine Interaction in Planaria,” Comparative Biochemistry and Physiology C, Vol. 125, 2000, pp. 225-231. doi:10.1016/S0742-8413(99)00111-5

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.