Status of Selective Emitters for p-Type c-Si Solar Cells

Abstract

Crystalline silicon (c-Si) solar cells have the lion share in world PV market. Solar cells made from crystalline silicon have lower conversion efficiency, hence optimization of each process steps are very important. Achieving low-cost photovoltaic energy in the coming years will depend on the development of third-generation solar cells. Given the trend towards these Si materials, the most promising selective emitter methods are identified to date. Current industrial monocrystalline Cz Si solar cells based on screen-printing technology for contact formation and homogeneous emitter have an efficiency potential of around 18.4%. Limitations at the rear side by the fully covering Al-BSF can be changed by selective emitter designs allowing a decoupling and separate optimization of the metallised and non-metallised areas. Several selective emitter concepts that are already in industrial mass production or close to it are presented, and their specialties and status concerning cell performance are demonstrated. Key issues that are considered here are the cost-effectiveness, added complexity, additional benefits, reliability and efficiency potential of each selective emitter tech- niques.

Share and Cite:

M. Rahman, "Status of Selective Emitters for p-Type c-Si Solar Cells," Optics and Photonics Journal, Vol. 2 No. 2, 2012, pp. 129-134. doi: 10.4236/opj.2012.22018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Bultman, I. Cesar, B. Geerlings, Y. Komatsu and W. Sinke, “Methods of Emitter Formation for Crystalline Silicon Solar Cells,” Photovoltaics International, Petten, 2010.
[2] Y. Komatsu, et al., “Innovative Diffusion Processes for Improved Efficiency on Industrial Solar Cells by Doping Profile Manipulation,” Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 21-25 September 2009, pp. 1063-1067.
[3] G. Hahn, “Status of Selective Emitter Technologies,” 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, 6-10 September 2010, pp. 1091-1096.
[4] A. Ebong, A. Rohatgi, W. Zhang and M. Neidert, “Understanding the Role of Glass Frit in the Front Ag Paste for High Sheet Resistance Emitters,” Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, 3-7 September 2007, p. 1734.
[5] M. H?rteis and S. Glunz, “Progress in Photovoltaics: Research and Applications,” Vol. 16, No. 7, 2008, pp. 555560. doi:10.1002/pip.850
[6] F. Book, A. Dastgheib-Shirazi, B. Raabe, H. Haverkamp1, G. Hahn and P. Grabitz, “Detailed Analysis of High Sheet Resistance Emitters for Selectively Doped Silicon Solar Cells,” Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 21-25 September 2009, pp. 1719-1722.
[7] B. Raabe, F. Book, A. Dastgheib-Shirazi and G. Hahn, “The Development of Etch-Back Processes for Industrial Silicon Solar Cells,” Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, 6-10 September 2010, pp. 1174-1178.
[8] H. Haverkamp, A. Shirazi, B. Raabe, F. Book and G. Hahn, “Minimizing the Electrical Losses on the Front Side: Development a Selective Emitter Process from a Single Diffusion,” The 33rd IEEE Photovoltaic Solar Energy Conference and Exhibition, San Diego, 11-16 May 2008, pp. 430-433.
[9] T. Lauermann, A. Dastgheib-Shirazi, F. Book, B. Raabe, G. Hahn, H. Haverkamp, D. Habermann, C. Demberger and C. Schmid, “Insect: An Inline Selective Emitter Concept with High Efficiencies at Competitive Process Costs Improved with Inkjet Masking Technology,” The 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 21-25 September 2009, pp. 17671770.
[10] A. Dastgheib-Shirazi, H. Haverkamp, B. Raabe, F. Book and G. Hahn, “Selective Emitter for Industrial Solar Cell Production: A Wet Chemical Approach Using a Single Side Diffusion Process,” Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 1-5 September 2008, pp. 1197-1199.
[11] T. Lauermann, F. Book, A. Dastgheib-Shirazi, G. Hahn, H. Haverkamp, R. Bleidiessel and M. Fleuster, “The Optimal Choice of the Doping Levels in an Inline Selective Emitter Design for Screen Printed Multicrystalline Silicon Solar Cells,” Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 21-25 September 2009, pp.1795-1797.
[12] J. Werner, J. Kohler and A. Esturo Breton, “A Method of Laser Doping of Solids with a Laser Line Focused,” German Patent No. DE 10 2004 036 220 B 4, 2009.
[13] P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute and R. Brendel, “Laser Ablation of SiO2 for Locally Contacted Si Solar Cells with Ultra-Short Pulses,” Progress in Photovoltaics: Research and Applications, Vol. 15, No. 6, 2007, pp. 521-527. doi:10.1002/pip.758
[14] S. J. Eisele, T. C. R?der, J. R. K?hler and J. H. Werner, “18.9% Efficient Full Area Laser Doped Silicon Solar Cell,” Applied Physics Letters, Vol. 95, No. 13, 2009, pp. 133501-133504. doi:10.1063/1.3232208
[15] J. K?hler, P. Grabitz, S. Eisele, T. R?der and J. Werner, “Laser Doped Selective Emitters Yield 0.5% Efficiency Gain,” Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 21-25 September 2009, pp. 1847-1850.
[16] D. Kray, N. Bay, G. Cimiotti, S. Kleinschmidt, K?sterke, A. L?sel, M. Sailer, A. Tr?ger, H. Kühnlein, Nussbaumer, C. Fleischmann and F. Granek, “Industrial LCP Selective Emitter Solar Cells with Plated Contacts,” 35th IEEE Photovoltaic Solar Energy Conference and Exhibition, Honolulu, 20-25 June 2010.
[17] B. Tjahjono, S. Wang, A. Sugianto, L. Mai, Hameiri, N. Borojevic, A. Ho-Baillie and S. R. Wenham, “Application of Laser Doped Contact Structure on Multicrystalline Solar Cells,” Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 1-5 September 2008, pp. 1995-2000.
[18] H. Antoniadis, F. Jiang, W. Shan and Y. Liu, “All Screen Printed Mass Produced Silicon Ink Selective Emitter Solar Cells,” Proceedings of the 35th IEEE Photovoltaic Solar Energy Conference and Exhibition, Honolulu, 2025 June 2010.
[19] A. Esturo-Breton, F. Binaie, M. Breselge, T. Friess, M. Geiger, E. Holbig, J. Isenberg, S. Keller, T. Kühn, J. Maier, A. Münzer, R. Schlosser, A. Schmid, C. Voyer, P. Winter, K. Bayer, J. Krümberg, S. Henze, I. Melnyk, M. Schmidt, S. Klingbeil, F. Walter, R. Kopecek and K. Peter, “Crystalline Si Solar Cells with Selective Emitter for Industrial Mass Production,” Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, 21-25 September 2009, p. 1068.
[20] R. Low, A. Gupta, N. Bateman, D. Ramappa, P. Sullivan, W. Skinner, J. Mullin, S. Peters, “High Efficiency Selective Emitter Enabled through Patterned Ion Implantation,” Proceedings of the 35th IEEE Photovoltaic Solar Energy Conference and Exhibition, Honolulu, 20-25 June 2010.
[21] A. Ebong, I. B. Cooper, B. Rounsaville, K. Tate, A. Rohatgi, B. Bunkenburg, J. Cathey, S. Kim and D. Ruf, “High Efficiency Inline Diffused Emitter (ILDE) Solar Cells on Mono-Crystalline CZ Silicon,” Progress in Photovoltaics: Research and Applications, Vol. 18, No. 8, 2010, pp. 590-595. doi:10.1002/pip.982
[22] D. S. Kim, B. Rounsaville, A. Pandey, A. Ebong, V. Upadhyaya, A. Upadhyaya, K. Tate, V. Yelundur, A. Rohatgi and J. Simpson, “Low-Cost, High-Throughput Emitter Formation Technologies Using a Ceramic Roller Hearth Metal-Free Diffusion Furnace for Crystalline Silicon Solar Cells,” Proceedings of the 16th Workshop on Crystalline Silicon Solar Cell Material and Process, Vail, 6-9 August 2006.
[23] M. M. Hilali, M. M. Al-Jassim, B. To, H. Moutinho, A. Rohatgi and S. Asher, “Understanding the Formation and Temperature Dependence of Thick-Film Ag Contacts on High-Sheet-Resistance Si Emitters for Solar Cells,” Journal of the Electrochemical Society, Vol. 152, No. 10, 2005, pp. G742-G749. doi:10.1149/1.2001507

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.