Share This Article:

Time Delay Induced Oscillation: An Example on a Class of n Coupled Van Der Pol Oscillators Model with Delays

Abstract Full-Text HTML XML Download Download as PDF (Size:1409KB) PP. 571-576
DOI: 10.4236/am.2012.36087    4,170 Downloads   6,502 Views  

ABSTRACT

In this paper, a class of n coupled van der Pol oscillator model with delays is considered. By employing an analysis approach, some sufficient conditions to guarantee the existence of stability and oscillations for themodel are obtained. Examples are provided to demonstrate the results.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Feng and C. Pettis, "Time Delay Induced Oscillation: An Example on a Class of n Coupled Van Der Pol Oscillators Model with Delays," Applied Mathematics, Vol. 3 No. 6, 2012, pp. 571-576. doi: 10.4236/am.2012.36087.

References

[1] S. E. Pinto, S. R. Lopez and R. L. Viana, “Collective Behavior in a Chain of Van der Pol Oscillators with Power-Law Coupling,” Physica A, Vol. 33, No. 2, 2002, pp. 339-356. doi:10.1016/S0378-4371(01)00549-0
[2] L. Zhang and S. Y. Liu, “Stability and Pattern Formation in a Coupled Arbitrary Order of Autocatalysis System,” Applied Mathematical Modelling, Vol. 33, No. 2, 2009, pp. 884-896. doi:10.1016/j.apm.2007.12.013
[3] M. H. Eissa, U. H. Hegazy and Y. A. Amer, “Dynamic Behavior of an AMB Supported Rotor Subject to Harmonic Excitation,” Applied Mathematical Modelling, Vol. 32, No. 7, 2008, pp. 1370-1380. doi:10.1016/j.apm.2007.04.005
[4] H. G. EnjieuKadji, J. B. ChabiOrou and P. Woafo, “Synchronization Dynamics in a Ring of Four Mutually Coupled Biological Systems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 7, 2008, pp. 1361-1372. doi:10.1016/j.cnsns.2006.11.004
[5] H. G. Winful and L. Rahman, “Synchronized Chaos and Spatiotemporal Chaos in Arrays of Coupled Lasers,” Physical Review Letters, Vol. 65, No. 10, 1990, pp. 15751578. doi:10.1103/PhysRevLett.65.1575
[6] S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa, “Self-Synchronization in Coupled Salt-Water Oscillators,” Physica D, Vol. 115, No. 3, 1998, pp. 313-320. doi:10.1016/S0167-2789(97)00240-6
[7] W. Jiang and J. Wei, “Bifurcation Analysis in Van Der Pol’s Oscillator with Delayed Feedback,” Journal of Computational and Applied Mathematics, Vol. 18, No. 5-6, 2008, pp. 604-615. doi:10.1016/j.cam.2007.01.041
[8] J. Zhang and X. Gu, “Stability and Bifurcation Analysis in the Delay-Coupled Van Der Pol Oscillators,” Applied Mathematical Modelling, Vol. 34, No. 3, 2010, pp. 22912299. doi:10.1016/j.apm.2009.10.037
[9] Y. Zhang, C. Zhang and B. Zheng, “Analysis of Bifurcation in a System of n Coupled Oscillators with Delays,” Applied Mathematical Modelling, Vol. 35, No. 2, 2011, pp. 903-914. doi:10.1016/j.apm.2010.07.045
[10] R. A. Horn and C. R. Johnso, “Matrix Analysis,” Cambridge Press, Cambridge, 1990.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.